Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2013, Article ID 834684, 13 pages
http://dx.doi.org/10.1155/2013/834684
Review Article

New Players for Advanced Prostate Cancer and the Rationalisation of Insulin-Sensitising Medication

1Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, 199 Ipswich Road, Brisbane, QLD 4102, Australia
2Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6H3Z6, Canada

Received 17 December 2012; Accepted 29 January 2013

Academic Editor: Claudia Cerella

Copyright © 2013 Jennifer H. Gunter et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, “Obesity and Overweight,” Fact Sheet #311, 2012, http://www.who.int/mediacentre/factsheets/fs311/en/.
  2. S. D. H. Malnick and H. Knobler, “The medical complications of obesity,” Oxford Journals: Medicine, vol. 99, no. 9, pp. 565–579, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Bergstrm, P. Pisani, V. Tenet, A. Wolk, and H. O. Adami, “Overweight as an avoidable cause of cancer in Europe,” International Journal of Cancer, vol. 91, no. 3, pp. 421–430, 2001. View at Publisher · View at Google Scholar
  4. V. Beral, C. Hermon, R. Peto et al., “Ovarian cancer and body size: Individual participant meta-analysis including 25,157 women with ovarian cancer from 47 epidemiological studies,” PLoS Medicine, vol. 9, no. 4, Article ID e1001200, 2012. View at Publisher · View at Google Scholar
  5. T. F. Chromecki, E. K. Cha, H. Fajkovic et al., “Obesity is associated with worse oncological outcomes in patients treated with radical cystectomy,” BJU International, vol. 111, no. 2, pp. 249–255, 2012. View at Publisher · View at Google Scholar
  6. N. Navai and C. G. Wood, “Environmental and modifiable risk factors in renal cell carcinoma,” Urologic Oncology: Seminars and Original Investigations, vol. 30, no. 2, pp. 220–224, 2012. View at Publisher · View at Google Scholar
  7. R. J. MacInnis and D. R. English, “Body size and composition and prostate cancer risk: systematic review and meta-regression analysis,” Cancer Causes and Control, vol. 17, no. 8, pp. 989–1003, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Rodriguez, S. J. Freedland, A. Deka et al., “Body mass index, weight change, and risk of prostate cancer in the cancer prevention study II nutrition cohort,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 1, pp. 63–69, 2007. View at Publisher · View at Google Scholar
  9. J. H. Fowke, S. S. Motley, D. A. Barocas et al., “The associations between statin use and prostate cancer screening, prostate size, high-grade prostatic intraepithelial neoplasia (PIN), and prostate cancer,” Cancer Causes and Control, vol. 22, no. 3, pp. 417–426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. S. Rickles, J. C. Iannuzzi, O. Mironov et al., “Visceral obesity and colorectal cancer: are we missing the boat with BMI?” Journal of Gastrointestinal Surgery, vol. 17, no. 1, pp. 133–143, 2013. View at Publisher · View at Google Scholar
  11. J. Hammarsten and R. Peeker, “Urological aspects of the metabolic syndrome,” Nature Reviews Urology, vol. 8, no. 9, pp. 483–494, 2011. View at Publisher · View at Google Scholar
  12. M. P. Porter and J. L. Stanford, “Obesity and the risk of prostate cancer,” The Prostate, vol. 62, no. 4, pp. 316–321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. R. Carmichael, “Obesity as a risk factor for development and poor prognosis of breast cancer,” BJOG: An International Journal of Obstetrics and Gynaecology, vol. 113, no. 10, pp. 1160–1166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. E. E. Calle, C. Rodriguez, K. Walker-Thurmond, and M. J. Thun, “Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. Adults,” The New England Journal of Medicine, vol. 348, no. 17, pp. 1625–1638, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Ma, H. Li, E. Giovannucci et al., “Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis,” The Lancet Oncology, vol. 9, no. 11, pp. 1039–1047, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. H. Fowke, C. M. Matthews, M. S. Buchowski et al., “Association between prostate-specific antigen and leptin, adiponectin, HbA1c or C-peptide among African-American and Caucasian men,” Prostate Cancer and Prostatic Diseases, vol. 11, no. 3, pp. 264–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Jayachandran, W. J. Aronson, M. K. Terris et al., “Obesity and positive surgical margins by anatomic location after radical prostatectomy: results from the shared equal access regional cancer hospital database,” BJU International, vol. 102, no. 8, pp. 964–968, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Rodriguez, A. V. Patel, E. E. Calle, E. J. Jacobs, A. Chao, and M. J. Thun, “Body mass index, height, and prostate cancer mortality in two large cohorts of adult men in the United States,” Cancer Epidemiology Biomarkers and Prevention, vol. 10, no. 4, pp. 345–353, 2001. View at Google Scholar · View at Scopus
  19. C. A. Gilbert and J. M. Slingerland, “Cytokines, obesity, and cancer: new insights on mechanisms linking obesity to cancer risk and progression,” Annual Review of Medicine, vol. 64, pp. 45–57, 2013. View at Publisher · View at Google Scholar
  20. S. D. Hursting and N. A. Berger, “Energy balance, host-related factors, and cancer progression,” Journal of Clinical Oncology, vol. 28, no. 26, pp. 4058–4065, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Iyer, D. P. Fairlie, J. B. Prins, B. D. Hammock, and L. Brown, “Inflammatory lipid mediators in adipocyte function and obesity,” Nature Reviews Endocrinology, vol. 6, no. 2, pp. 71–82, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Furukawa, T. Fujita, M. Shimabukuro et al., “Increased oxidative stress in obesity and its impact on metabolic syndrome,” Journal of Clinical Investigation, vol. 114, no. 12, pp. 1752–1761, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. C. de Luca and J. M. Olefsky, “Inflammation and insulin resistance,” The FEBS Letters, vol. 582, no. 1, pp. 97–105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. U. N. Das, “Essential fatty acids enhance free radical generation and lipid peroxidation to induce apoptosis of tumor cells,” Clinical Lipidology, vol. 6, no. 4, pp. 463–489, 2011. View at Publisher · View at Google Scholar
  25. D. K. Nomura, D. P. Lombardi, J. W. Chang et al., “Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer,” Chemistry and Biology, vol. 18, no. 7, pp. 846–856, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M.-C. Cathcart, J. Lysaght, and G. P. Pidgeon, “Eicosanoid signalling pathways in the development and progression of colorectal cancer: novel approaches for prevention/intervention,” Cancer and Metastasis Reviews, vol. 30, no. 3-4, pp. 363–385, 2011. View at Publisher · View at Google Scholar
  27. J. A. Locke, E. S. Tomlinson Guns, M. L. Lehman et al., “Arachidonic acid activation of intratumoral steroid synthesis during prostate cancer progression to castration resistance,” The Prostate, vol. 70, no. 3, pp. 239–251, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Ahima and S. Osei, “Adipokines in obesity,” Frontiers of Hormone Research, vol. 36, pp. 182–197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. D. Hursting, J. DiGiovanni, A. J. Dannenberg et al., “Obesity, energy balance, and cancer: new opportunities for prevention,” Cancer Prevention Research, vol. 5, no. 11, pp. 1260–1272, 2012. View at Publisher · View at Google Scholar
  30. J. D. Arditi, M. Venihaki, K. P. Karalis, and G. P. Chrousos, “Antiproliferative effect of adiponectin on MCF7 breast cancer cells: a potential hormonal link between obesity and cancer,” Hormone and Metabolic Research, vol. 39, no. 1, pp. 9–13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. E. Cox, M. E. Gleave, M. Zakikhani et al., “Insulin receptor expression by human prostate cancers,” The Prostate, vol. 69, no. 1, pp. 33–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Isbarn, L. Boccon-Gibod, P. R. Carroll et al., “Androgen deprivation therapy for the treatment of prostate cancer: consider both benefits and risks,” European Urology, vol. 55, no. 1, pp. 62–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. I. B. Sahra, K. Laurent, A. Loubat et al., “The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level,” Oncogene, vol. 27, no. 25, pp. 3576–3586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. R. Smith, H. Lee, and D. M. Nathan, “Insulin sensitivity during combined androgen blockade for prostate cancer,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 4, pp. 1305–1308, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Hammarsten and B. Högstedt, “Hyperinsulinaemia: a prospective risk factor for lethal clinical prostate cancer,” European Journal of Cancer, vol. 41, no. 18, pp. 2887–2895, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. M. L. Neuhouser, C. Till, A. Kristal et al., “Finasteride modifies the relation between serum C-peptide and prostate cancer risk: results from the prostate cancer prevention trial,” Cancer Prevention Research, vol. 3, no. 3, pp. 279–289, 2010. View at Publisher · View at Google Scholar
  37. D. B. Ulanet, D. L. Ludwig, C. R. Kahn, and D. Hanahan, “Insulin receptor functionally enhances multistage tumor progression and conveys intrinsic resistance to IGF-1R targeted therapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 24, pp. 10791–10798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Zhang, D. H. Fagan, X. Zeng, K. T. Freeman, D. Sachdev, and D. Yee, “Inhibition of cancer cell proliferation and metastasis by insulin receptor downregulation,” Oncogene, vol. 29, no. 17, pp. 2517–2527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Seim, A. L. Lubik, M. Lehman et al., “Cloning of a novel insulin-regulated ghrelin transcript in prostate cancer,” Journal of Molecular Endocrinology, 2012. View at Publisher · View at Google Scholar
  40. A. Belfiore, F. Frasca, G. Pandini, L. Sciacca, and R. Vigneri, “Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease,” Endocrine Reviews, vol. 30, no. 6, pp. 586–623, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. del Barco, A. Vazquez-Martin, S. Cufí et al., “Metformin: multi-faceted protection against cancer,” Oncotarget, vol. 2, no. 12, pp. 896–917, 2011. View at Google Scholar
  42. M. Heni, J. Hennenlotter, M. Scharpf et al., “Insulin receptor isoforms A and B as well as insulin receptor substrates-1 and -2 are differentially expressed in prostate cancer,” PLoS ONE, vol. 7, no. 12, Article ID e50953, 2012. View at Publisher · View at Google Scholar
  43. R. Call, M. Grimsley, L. Cadwallader et al., “Insulin-carcinogen or mitogen? Preclinical and clinical evidence from prostate, breast, pancreatic, and colorectal cancer research,” Postgraduate Medicine, vol. 122, no. 3, pp. 158–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. K. B. Stein, C. F. Snyder, B. B. Barone et al., “Colorectal cancer outcomes, recurrence, and complications in persons with and without diabetes mellitus: a systematic review and meta-analysis,” Digestive Diseases and Sciences, vol. 55, no. 7, pp. 1839–1851, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Simon and B. Balkau, “Diabetes mellitus, hyperglycaemia and cancer,” Diabetes and Metabolism, vol. 36, no. 3, pp. 182–191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Fukui, M. Tanaka, M. Kadono et al., “Serum prostate-specific antigen levels in men with type 2 diabetes,” Diabetes Care, vol. 31, no. 5, pp. 930–931, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. B. L. Pierce, S. Plymate, E. A. Ostrander, and J. L. Stanford, “Diabetes mellitus and prostate cancer risk,” The Prostate, vol. 68, no. 10, pp. 1126–1132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Abdollah, A. Briganti, N. Suardi et al., “Does diabetes mellitus increase the risk of high-grade prostate cancer in patients undergoing radical prostatectomy,” Prostate Cancer and Prostatic Diseases, vol. 14, no. 1, pp. 74–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. L. P. Wallner, H. Morgenstern, M. E. McGree et al., “The effects of type 2 diabetes and hypertension on changes in serum prostate specific antigen levels: results from the olmsted county study,” Urology, vol. 77, no. 1, pp. 137–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. C. F. Snyder, K. B. Stein, B. B. Barone et al., “Does pre-existing diabetes affect prostate cancer prognosis A systematic review,” Prostate Cancer and Prostatic Diseases, vol. 13, no. 1, pp. 58–64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. J. S. Kasper and E. Giovannucci, “A meta-analysis of diabetes mellitus and the risk of prostate cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 11, pp. 2056–2062, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Daousi, I. F. Casson, G. V. Gill, I. A. MacFarlane, J. P. H. Wilding, and J. H. Pinkney, “Prevalence of obesity in type 2 diabetes in secondary care: association with cardiovascular risk factors,” Postgraduate Medical Journal, vol. 82, no. 966, pp. 280–284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. C. J. Currie, C. D. Poole, and E. A. M. Gale, “The influence of glucose-lowering therapies on cancer risk in type 2 diabetes,” Diabetologia, vol. 52, no. 9, pp. 1766–1777, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. J. M. Jonasson, R. Ljung, M. Talbäck, B. Haglund, S. Gudbjörnsdòttir, and G. Steineck, “Insulin glargine use and short-term incidence of malignancies-a population-based follow-up study in Sweden,” Diabetologia, vol. 52, no. 9, pp. 1745–1754, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. L. G. Hemkens, U. Grouven, R. Bender et al., “Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study,” Diabetologia, vol. 52, no. 9, pp. 1732–1744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. S. L. Bowker, S. R. Majumdar, P. Veugelers, and J. A. Johnson, “Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin,” Diabetes Care, vol. 29, no. 2, pp. 254–258, 2006. View at Google Scholar · View at Scopus
  57. J. M. M. Evans, L. A. Donnelly, A. M. Emslie-Smith, D. R. Alessi, and A. D. Morris, “Metformin and reduced risk of cancer in diabetic patients,” The British Medical Journal, vol. 330, no. 7503, pp. 1304–1305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. G. W. D. Landman, N. Kleefstra, K. J. J. van Hateren, K. H. Groenier, R. O. B. Gans, and H. J. G. Bilo, “Metformin associated with lower cancer mortality in type 2 diabetes: zodiac-16,” Diabetes Care, vol. 33, no. 2, pp. 322–326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. X. X. He, S. M. Tu, M. H. Lee, and S. C. J. Yeung, “Thiazolidinediones and metformin associated with improved survival of diabetic prostate cancer patients,” Annals of Oncology, vol. 22, no. 12, pp. 2640–2645, 2011. View at Publisher · View at Google Scholar
  60. J. A. Cauley, A. McTiernan, R. J. Rodabough et al., “Statin use and breast cancer: prospective results from the women's health initiative,” Journal of the National Cancer Institute, vol. 98, no. 10, pp. 700–707, 2006. View at Publisher · View at Google Scholar
  61. I. Karp, H. Behlouli, J. LeLorier, and L. Pilote, “Statins and cancer risk,” The American Journal of Medicine, vol. 121, no. 4, pp. 302–309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Algire, L. Amrein, M. Zakikhani, L. Panasci, and M. Pollak, “Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase,” Endocrine-Related Cancer, vol. 17, no. 2, pp. 351–360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. A. DeCensi, M. Puntoni, P. Goodwin et al., “Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis,” Cancer Prevention Research, vol. 3, no. 11, pp. 1451–1461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. J. L. Wright and J. L. Stanford, “Metformin use and prostate cancer in Caucasian men: results from a population-based case-control study,” Cancer Causes and Control, vol. 20, no. 9, pp. 1617–1622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. R. J. O. Dowling, M. Zakikhani, I. G. Fantus, M. Pollak, and N. Sonenberg, “Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells,” Cancer Research, vol. 67, no. 22, pp. 10804–10812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. A. S. Green, N. Chapuis, T. T. Maciel et al., “The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation,” Blood, vol. 116, no. 20, pp. 4262–4273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Tao, J. Gong, X. Luo et al., “AMPK exerts dual regulatory effects on the PI3K pathway,” Journal of Molecular Signaling, vol. 5, no. 1, article 1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. O. Larsson, M. Morita, I. Topisirovic et al., “Distinct perturbation of the translatome by the antidiabetic drug metformin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 23, pp. 8977–8982, 2012. View at Publisher · View at Google Scholar
  69. C. Oliveras-Ferraros, A. Vazquez-Martin, and J. A. Menendez, “Genome-wide inhibitory impact of the AMPK activator metformin on [kinesins, tubulins, histones, auroras and polo-like kinases] M-phase cell cycle genes in human breast cancer cells,” Cell Cycle, vol. 8, no. 10, pp. 1633–1636, 2009. View at Google Scholar · View at Scopus
  70. J. V. Swinnen, H. Heemers, T. van de Sande et al., “Androgens, lipogenesis and prostate cancer,” Journal of Steroid Biochemistry and Molecular Biology, vol. 92, no. 4, pp. 273–279, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. N. U. Samarajeewa, S. Ham, F. Yang, E. R. Simpson, and K. A. Brown, “Promoter-specific effects of metformin on aromatase transcript expression,” Steroids, vol. 76, no. 8, pp. 768–771, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. B. Wu, S. Li, L. Sheng et al., “Metformin inhibits the development and metastasis of ovarian cancer,” Oncology Reports, vol. 28, no. 3, pp. 903–908, 2012. View at Publisher · View at Google Scholar
  73. W. Li, Y. Yuan, L. Huang, M. Qiao, and Y. Zhang, “Metformin alters the expression profiles of microRNAs in human pancreatic cancer cells,” Diabetes Research and Clinical Practice, vol. 96, no. 2, pp. 187–195, 2012. View at Publisher · View at Google Scholar
  74. B. Bao, Z. Wang, S. Ali et al., “Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells,” Cancer Prevention Research, vol. 5, no. 3, pp. 355–364, 2012. View at Publisher · View at Google Scholar
  75. S. M. Hadad, S. Fleming, and A. M. Thompson, “Targeting AMPK: a new therapeutic opportunity in breast cancer,” Critical Reviews in Oncology/Hematology, vol. 67, no. 1, pp. 1–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Pollak, “Metformin and other biguanides in oncology: advancing the research agenda,” Cancer Prevention Research, vol. 3, no. 9, pp. 1060–1065, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Derosa, A. F. G. Cicero, A. D'Angelo, E. Fogari, and P. Maffioli, “Effects of 1-year orlistat treatment compared to placebo on insulin resistance parameters in patients with type 2 diabetes,” Journal of Clinical Pharmacy and Therapeutics, vol. 37, no. 2, pp. 187–195, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Oliveras, A. Blancafort, A. Urruticoechea et al., “Novel anti-fatty acid synthase compounds with anti-cancer activity in HER2+ breast cancer,” Annals of the New York Academy of Sciences, vol. 1210, pp. 86–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Tomek, R. Wagner, F. Varga, C. F. Singer, H. Karlic, and T. W. Grunt, “Blockade of fatty acid synthase induces ubiquitination and degradation of phosphoinositide-3-kinase signaling proteins in ovarian cancer,” Molecular Cancer Research, vol. 9, no. 12, pp. 1767–1779, 2011. View at Publisher · View at Google Scholar
  80. M. Mansour, D. Schwartz, R. Judd et al., “Thiazolidinediones/PPARγ agonists and fatty acid synthase inhibitors as an experimental combination therapy for prostate cancer,” International Journal of Oncology, vol. 38, no. 2, pp. 537–546, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. S. J. Kridel, F. Axelrod, N. Rozenkrantz, and J. W. Smith, “Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity,” Cancer Research, vol. 64, no. 6, pp. 2070–2075, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. L. M. Knowles, C. Yang, A. Osterman, and J. W. Smith, “Inhibition of fatty-acid synthase induces caspase-8-mediated tumor cell apoptosis by up-regulating DDIT4,” The Journal of Biological Chemistry, vol. 283, no. 46, pp. 31378–31384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Fujiwara, Y. Sowa, M. Horinaka et al., “The anti-obesity drug orlistat promotes sensitivity to TRAIL by two different pathways in hormone-refractory prostate cancer cells,” International Journal of Oncology, vol. 40, no. 5, pp. 1483–1491, 2012. View at Publisher · View at Google Scholar
  84. J. L. Little, F. B. Wheeler, D. R. Fels, C. Koumenis, and S. J. Kridel, “Inhibition of fatty acid synthase induces endoplasmic reticulum stress in tumor cells,” Cancer Research, vol. 67, no. 3, pp. 1262–1269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. D. R. L. Browning and R. M. Martin, “Statins and risk of cancer: a systematic review and metaanalysis,” International Journal of Cancer, vol. 120, no. 4, pp. 833–843, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. R. J. Hamilton, L. L. Banez, W. J. Aronson et al., “Statin medication use and the risk of biochemical recurrence after radical prostatectomy: results from the shared equal access regional cancer hospital (SEARCH) database,” Cancer, vol. 116, no. 14, pp. 3389–3398, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. K. Shafique, P. McLoone, K. Qureshi, H. Leung, C. Hart, and D. S. Morrison, “Cholesterol and the risk of grade-specific prostate cancer incidence: evidence from two large prospective cohort studies with up to 37 years' follow up,” BMC Cancer, vol. 12, article 25, 2012. View at Publisher · View at Google Scholar
  88. S. Loeb, D. Kan, B. T. Helfand, R. B. Nadler, and W. J. Catalona, “Is statin use associated with prostate cancer aggressiveness?” BJU International, vol. 105, no. 9, pp. 1222–1225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. E. A. Mostaghel, K. R. Solomon, K. Pelton, M. R. Freeman, and R. B. Montgomery, “Impact of circulating cholesterol levels on growth and intratumoral androgen concentration of prostate tumors,” PLoS ONE, vol. 7, no. 1, Article ID e30062, 2012. View at Publisher · View at Google Scholar
  90. O. Yu, D. M. Boudreau, D. S. M. Buist, and D. L. Miglioretti, “Statin use and female reproductive organ cancer risk in a large population-based setting,” Cancer Causes and Control, vol. 20, no. 5, pp. 609–616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. Y. Segawa, R. Yoshimura, T. Hase et al., “Expression of peroxisome proliferator-activated receptor (PPAR) in human prostate cancer,” The Prostate, vol. 51, no. 2, pp. 108–116, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. Q. Du, Y.-J. Wang, S. Yang, B. Wu, P. Han, and Y.-Y. Zhao, “A systematic review and meta-analysis of randomized controlled trials comparing pioglitazone versus metformin in the treatment of polycystic ovary syndrome,” Current Medical Research and Opinion, vol. 28, no. 5, pp. 723–730, 2012. View at Publisher · View at Google Scholar
  93. I. N. Colmers, S. L. Bowker, and J. A. Johnson, “Thiazolidinedione use and cancer incidence in type 2 diabetes: a systematic review and meta-analysis,” Diabetes and Metabolism, vol. 38, no. 6, pp. 475–484, 2012. View at Publisher · View at Google Scholar
  94. A. Bolden, L. Bernard, D. Jones, T. Akinyeke, and L. V. Stewart, “The PPAR γ agonist troglitazone regulates Erk 1/2 phosphorylation via a PPARγ-independent, MEK-dependent pathway in human prostate cancer cells,” PPAR Research, vol. 2012, Article ID 929052, 9 pages, 2012. View at Publisher · View at Google Scholar
  95. M. Jiang, S. Fernandez, W. G. Jerome et al., “Disruption of PPARγ signaling results in mouse prostatic intraepithelial neoplasia involving active autophagy,” Cell Death and Differentiation, vol. 17, no. 3, pp. 469–481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. L. Al-Alem, R. C. Southard, M. W. Kilgore, and T. E. Curry, “Specific thiazolidinediones inhibit ovarian cancer cell line proliferation and cause cell cycle arrest in a PPARγ independent manner,” PLoS ONE, vol. 6, no. 1, Article ID e16179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Kim, J. J. Lee, and D. S. Heo, “PPARγ ligands induce growth inhibition and apoptosis through p63 and p73 in human ovarian cancer cells,” Biochemical and Biophysical Research Communications, vol. 406, no. 3, pp. 389–395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. B. E. Lyles, T. O. Akinyeke, P. E. Moss, and L. V. Stewart, “Thiazolidinediones regulate expression of cell cycle proteins in human prostate cancer cells via PPARγ-dependent and PPARγ-independent pathways,” Cell Cycle, vol. 8, no. 2, pp. 268–277, 2009. View at Google Scholar · View at Scopus
  99. X. H. Tan, H. Dagher, C. A. Hutton, and J. E. Bourke, “Effects of PPARγ ligands on TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells,” Respiratory Research, vol. 11, article 21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. P. Kurtzhals, L. Schäffer, A. Sørensen et al., “Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use,” Diabetes, vol. 49, no. 6, pp. 999–1005, 2000. View at Google Scholar · View at Scopus
  101. B. F. Hansen, G. M. Danielsen, K. Drejer et al., “Sustained signalling from the insulin receptor after stimulation with insulin analogues exhibiting increased mitogenic potency,” Biochemical Journal, vol. 315, no. 1, pp. 271–279, 1996. View at Google Scholar · View at Scopus
  102. B. F. Hansen, P. Kurtzhals, A. B. Jensen, A. Dejgaard, and D. Russell-Jones, “Insulin X10 revisited: a super-mitogenic insulin analogue,” Diabetologia, vol. 54, no. 9, pp. 2226–2231, 2011. View at Publisher · View at Google Scholar
  103. Registries, A.I.o.H.a.W.A.A.o.C., Cancer in Australia: An Overview, 2010, vol. 60 of Australian Institute of Health and Welfare’s Cancer series, AIHW, Canberra, Australia, 2010.
  104. A. Tewari, J. D. Raman, P. Chang, S. Rao, G. Divine, and M. Menon, “Long-term survival probability in men with clinically localized prostate cancer treated either conservatively or with definitive treatment (radiotherapy or radical prostatectomy),” Urology, vol. 68, no. 6, pp. 1268–1274, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. C. Huggins, “Effect of orchiectomy and irradiation on cancer of the prostate,” Annals of Surgery, vol. 115, no. 6, pp. 1192–1200, 1942. View at Publisher · View at Google Scholar
  106. G. Tolis, M. Koutsilieris, and A. Stellos, “Metastatic prostate cancer: hormone dependency and therapeutic efficacy of GnRH analogues,” Acta Endocrinologica, Supplementum, vol. 107, no. 265, pp. 22–23, 1984. View at Google Scholar · View at Scopus
  107. B. A. Hellerstedt and K. J. Pienta, “The current state of hormonal therapy for prostate cancer,” CA: A Cancer Journal for Clinicians, vol. 52, no. 3, pp. 154–179, 2002. View at Google Scholar · View at Scopus
  108. I. F. Tannock, R. de Wit, W. R. Berry et al., “Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer,” The New England Journal of Medicine, vol. 351, no. 15, pp. 1502–1512, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. D. R. Berthold, G. R. Pond, F. Soban, R. de Wit, M. Eisenberger, and I. F. Tannock, “Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study,” Journal of Clinical Oncology, vol. 26, no. 2, pp. 242–245, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. J. S. de Bono, S. Oudard, M. Ozguroglu et al., “Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial,” The Lancet, vol. 376, no. 9747, pp. 1147–1154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. E. J. Small and S. Srinivas, “The antiandrogen withdrawal syndrome: experience in a large cohort of unselected patients with advanced prostate cancer,” Cancer, vol. 76, no. 8, pp. 1428–1434, 1995. View at Publisher · View at Google Scholar
  112. E. J. Small, S. Halabi, N. A. Dawson et al., “Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a phase III trial (CALGB 9583),” Journal of Clinical Oncology, vol. 22, no. 6, pp. 1025–1033, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. R. B. Montgomery, E. A. Mostaghel, R. Vessella et al., “Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth,” Cancer Research, vol. 68, no. 11, pp. 4447–4454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. M. E. Taplin, G. J. Bubley, T. D. Shuster et al., “Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer,” The New England Journal of Medicine, vol. 332, no. 21, pp. 1393–1398, 1995. View at Publisher · View at Google Scholar · View at Scopus
  115. G. Buchanan, M. Yang, A. Cheong et al., “Structural and functional consequences of glutamine tract variation in the androgen receptor,” Human Molecular Genetics, vol. 13, no. 16, pp. 1677–1692, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. J. Veldscholte, C. Ris-Stalpers, G. G. J. M. Kuiper et al., “A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens,” Biochemical and Biophysical Research Communications, vol. 173, no. 2, pp. 534–540, 1990. View at Publisher · View at Google Scholar · View at Scopus
  117. S. M. Dehm, L. J. Schmidt, H. V. Heemers, R. L. Vessella, and D. J. Tindall, “Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance,” Cancer Research, vol. 68, no. 13, pp. 5469–5477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. C. D. Chen, D. S. Welsbie, C. Tran et al., “Molecular determinants of resistance to antiandrogen therapy,” Nature Medicine, vol. 10, no. 1, pp. 33–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. S. M. Dehm and D. J. Tindall, “Androgen receptor structural and functional elements: role and regulation in prostate cancer,” Molecular Endocrinology, vol. 21, no. 12, pp. 2855–2863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. J. Holzbeierlein, P. Lal, E. LaTulippe et al., “Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance,” American Journal of Pathology, vol. 164, no. 1, pp. 217–227, 2004. View at Google Scholar · View at Scopus
  121. M. J. Linja, K. J. Savinainen, O. R. Saramäki, T. L. J. Tammela, R. L. Vessella, and T. Visakorpi, “Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer,” Cancer Research, vol. 61, no. 9, pp. 3550–3555, 2001. View at Google Scholar · View at Scopus
  122. E. A. Mostaghel, S. T. Page, D. W. Lin et al., “Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer,” Cancer Research, vol. 67, no. 10, pp. 5033–5041, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. J. Geller, J. Albert, D. Nachtsheim, D. Loza, and S. Lippman, “Steroid levels in cancer of the prostate—markers of tumor differentiation and adequacy of anti-androgen therapy,” Progress in Clinical and Biological Research, vol. 33, pp. 103–111, 1979. View at Google Scholar · View at Scopus
  124. J. Geller, D. J. de la Vega, J. D. Albert, and D. A. Nachtsheim, “Tissue dihydrotestosterone levels and clinical response to hormonal therapy in patients with advanced prostate cancer,” Journal of Clinical Endocrinology and Metabolism, vol. 58, no. 1, pp. 36–40, 1984. View at Google Scholar · View at Scopus
  125. T. Nishiyama, Y. Hashimoto, and K. Takahashi, “The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer,” Clinical Cancer Research, vol. 10, no. 21, pp. 7121–7126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. J. A. Locke, E. S. Guns, A. A. Lubik et al., “Androgen Levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer,” Cancer Research, vol. 68, no. 15, pp. 6407–6415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. C. G. Leon, J. A. Locke, H. H. Adomat et al., “Alterations in cholesterol regulation contribute to the production of intratumoral androgens during progression to castration-resistant prostate cancer in a mouse xenograft model,” The Prostate, vol. 70, no. 4, pp. 390–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. C. Tran, S. Ouk, N. J. Clegg et al., “Development of a second-generation antiandrogen for treatment of advanced prostate cancer,” Science, vol. 324, no. 5928, pp. 787–790, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. P. A. Watson, Y. F. Chen, M. D. Balbas et al., “Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 39, pp. 16759–16765, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. N. J. Clegg, J. Wongvipat, J. D. Joseph et al., “ARN-509: a novel antiandrogen for prostate cancer treatment,” Cancer Research, vol. 72, no. 6, pp. 1494–1503, 2012. View at Publisher · View at Google Scholar
  131. G. Attard, A. H. M. Reid, R. A'Hern et al., “Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer,” Journal of Clinical Oncology, vol. 27, no. 23, pp. 3742–3748, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. G. A. Potter, S. Elaine Barrie, M. Jarman, and M. G. Rowlands, “Novel steroidal inhibitors of human cytochrome P45017α (17α-hydroxylase-C17,20-lyase): potential agents for the treatment of prostatic cancer,” Journal of Medicinal Chemistry, vol. 38, no. 13, pp. 2463–2471, 1995. View at Google Scholar · View at Scopus
  133. S. E. Barrie, G. A. Potter, P. M. Goddard, B. P. Haynes, M. Dowsett, and M. Jarman, “Pharmacology of novel steroidal inhibitors of cytochrome p450(17α) (17α-hydroxylase/C17-20 lyase),” Journal of Steroid Biochemistry and Molecular Biology, vol. 50, no. 5-6, pp. 267–273, 1994. View at Publisher · View at Google Scholar · View at Scopus
  134. K. Fizazi, H. I. Scher, A. Molina et al., “Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study (vol 13, pg 983, 2012),” The Lancet Oncology, vol. 13, no. 11, pp. E464–E464, 2012. View at Google Scholar
  135. C. J. Ryan, M. R. Smith, J. S. de Bono et al., “Abiraterone in metastatic prostate cancer without previous chemotherapy,” The New England Journal of Medicine, vol. 368, no. 2, pp. 138–148, 2013. View at Publisher · View at Google Scholar
  136. T. Vasaitis, A. Belosay, A. Schayowitz et al., “Androgen receptor inactivation contributes to antitumor efficacy of 17α-hydroxylase/17,20-lyase inhibitor 3β-hydroxy-17-(1H-benzimidazole-1-yl)androsta-5,16-diene in prostate cancer,” Molecular Cancer Therapeutics, vol. 7, no. 8, pp. 2348–2357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. G. Attard, A. H. M. Reid, T. A. Yap et al., “Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven,” Journal of Clinical Oncology, vol. 26, no. 28, pp. 4563–4571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. H. I. Scher, K. Fizazi, F. Saad et al., “Increased survival with enzalutamide in prostate cancer after chemotherapy,” The New England Journal of Medicine, vol. 367, no. 13, pp. 1187–1197, 2012. View at Publisher · View at Google Scholar
  139. S. Basaria, D. C. Muller, M. A. Carducci, J. Egan, and A. S. Dobs, “Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen-deprivation therapy,” Cancer, vol. 106, no. 3, pp. 581–588, 2006. View at Publisher · View at Google Scholar · View at Scopus
  140. S. M. Grundy, H. B. Brewer, J. I. Cleeman, S. C. Smith, and C. Lenfant, “Definition of metabolic syndrome: report of the national heart, lung, and blood institute/American heart association conference on scientific issues related to definition,” Circulation, vol. 109, no. 3, pp. 433–438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  141. M. A. Yialamas, A. A. Dwyer, E. Hanley, H. Lee, N. Pitteloud, and F. J. Hayes, “Acute sex steroid withdrawal reduces insulin sensitivity in healthy men with idiopathic hypogonadotropic hypogonadism,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 11, pp. 4254–4259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. J. Yannucci, J. Manola, M. B. Garnick, G. Bhat, and G. J. Bubley, “The effect of androgen deprivation therapy on fasting serum lipid and glucose parameters,” Journal of Urology, vol. 176, no. 2, pp. 520–525, 2006. View at Publisher · View at Google Scholar · View at Scopus
  143. J. Flanagan, P. K. Gray, N. Hahn et al., “Presence of the metabolic syndrome is associated with shorter time to castration-resistant prostate cancer,” Annals of Oncology, vol. 22, no. 4, pp. 801–807, 2011. View at Publisher · View at Google Scholar · View at Scopus
  144. M. G. Giganti, D. Minella, B. Testa et al., “A pilot study on the transcriptional response of androgen- and insulin-related genes in peripheral blood mononuclear cells induced by testosterone administration in hypogonadal men,” Journal of Biological Regulators and Homeostatic Agents, vol. 25, no. 2, pp. 291–294, 2011. View at Google Scholar
  145. S. Rohrmann, M. S. Shiels, D. S. Lopez et al., “Body fatness and sex steroid hormone concentrations in US men: results from NHANES III,” Cancer Causes and Control, vol. 22, no. 8, pp. 1141–1151, 2011. View at Publisher · View at Google Scholar
  146. S. M. Haffner, R. A. Valdez, L. Mykkanen, M. P. Stern, and M. S. Katz, “Decreased testosterone and dehydroepiandrosterone sulfate concentrations are associated with increased insulin and glucose concentrations in nondiabetic men,” Metabolism, vol. 43, no. 5, pp. 599–603, 1994. View at Publisher · View at Google Scholar · View at Scopus
  147. M. Moriarty-Kelsey, J. E. F. Harwood, S. H. Travers, P. S. Zeitler, and K. J. Nadeau, “Testosterone, obesity and insulin resistance in young males: evidence for an association between gonadal dysfunction and insulin resistance during puberty,” Journal of Pediatric Endocrinology and Metabolism, vol. 23, no. 12, pp. 1281–1287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. C. Wang, R. Feng, D. Sun, Y. Li, X. Bi, and C. Sun, “Metabolic profiling of urine in young obese men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC/Q-TOF MS),” Journal of Chromatography B, vol. 879, no. 27, pp. 2871–2876, 2011. View at Publisher · View at Google Scholar
  149. D. Simon, P. Preziosi, E. Barrett-Connor et al., “Interrelation between plasma testosterone and plasma insulin in healthy adult men: the telecom study,” Diabetologia, vol. 35, no. 2, pp. 173–177, 1992. View at Google Scholar · View at Scopus
  150. N. Pitteloud, V. K. Mootha, A. A. Dwyer et al., “Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men,” Diabetes Care, vol. 28, no. 7, pp. 1636–1642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  151. K. B. Rubinow, C. N. Snyder, J. K. Amory, A. N. Hoofnagle, and S. T. Page, “Acute testosterone deprivation reduces insulin sensitivity in men,” Clinical Endocrinology, vol. 76, no. 2, pp. 281–288, 2012. View at Publisher · View at Google Scholar
  152. M. R. Smith, H. Lee, M. A. Fallon, and D. M. Nathan, “Adipocytokines, obesity, and insulin resistance during combined androgen blockade for prostate cancer,” Urology, vol. 71, no. 2, pp. 318–322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. D. I. Quinn, S. M. Henshall, and R. L. Sutherland, “Molecular markers of prostate cancer outcome,” European Journal of Cancer, vol. 41, no. 6, pp. 858–887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  154. Y. Wang, Y. Zhu, L. Zhang et al., “Insulin promotes proliferation, survival, and invasion in endometrial carcinoma by activating the MEK/ERK pathway,” Cancer Letters, vol. 322, no. 2, pp. 223–231, 2012. View at Publisher · View at Google Scholar
  155. A. A. Lubik, J. H. Gunter, S. C. Hendy et al., “Insulin increases de novo steroidogenesis in prostate cancer cells,” Cancer Research, vol. 71, no. 17, pp. 5754–5764, 2011. View at Publisher · View at Google Scholar
  156. A. Eichholz, R. Ferraldeschi, G. Attard, and J. S. de Bono, “Putting the brakes on continued androgen receptor signaling in castration-resistant prostate cancer,” Molecular and Cellular Endocrinology, vol. 360, no. 1-2, pp. 68–75, 2012. View at Publisher · View at Google Scholar
  157. L. O. Reis, “Old issues and new perspectives on prostate cancer hormonal therapy: the molecular substratum,” Medical Oncology, vol. 29, no. 3, pp. 1948–1955, 2012. View at Publisher · View at Google Scholar · View at Scopus
  158. B. L. Cohen, P. Gomez, Y. Omori et al., “Cyclooxygenase-2 (cox-2) expression is an independent predictor of prostate cancer recurrence,” International Journal of Cancer, vol. 119, no. 5, pp. 1082–1087, 2006. View at Publisher · View at Google Scholar · View at Scopus
  159. Z. X. Cao, L. Z. Liu, D. A. Dixon, J. Z. Zheng, B. Chandran, and B. H. Jiang, “Insulin-like growth factor-I induces cyclooxygenase-2 expression via PI3K, MAPK and PKC signaling pathways in human ovarian cancer cells,” Cellular Signalling, vol. 19, no. 7, pp. 1542–1553, 2007. View at Publisher · View at Google Scholar · View at Scopus
  160. O. Stoeltzing, W. Liu, F. Fan et al., “Regulation of cyclooxygenase-2 (COX-2) expression in human pancreatic carcinoma cells by the insulin-like growth factor-I receptor (IGF-IR) system,” Cancer Letters, vol. 258, no. 2, pp. 291–300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  161. A. Zoubeidi, A. Zardan, E. Beraldi et al., “Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity,” Cancer Research, vol. 67, no. 21, pp. 10455–10465, 2007. View at Publisher · View at Google Scholar · View at Scopus
  162. A. Zoubeidi, A. Zardan, R. M. Wiedmann et al., “Hsp27 promotes insulin-like growth factor-I survival signaling in prostate cancer via p90Rsk-dependent phosphorylation and inactivation of BAD,” Cancer Research, vol. 70, no. 6, pp. 2307–2317, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. J. Zhang, T. Lei, X. Chen et al., “Resistin up-regulates COX-2 expression via TAK1-IKK-NF-κB signaling pathway,” Inflammation, vol. 33, no. 1, pp. 25–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. E. Mullen, E. O'Reilly, and K. Ohlendieck, “Skeletal muscle tissue from the Goto-Kakizaki rat model of type-2 diabetes exhibits increased levels of the small heat shock protein Hsp27,” Molecular Medicine Reports, vol. 4, no. 2, pp. 229–236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. D. F. P. Burut, A. Borai, C. Livingstone, and G. Ferns, “Serum heat shock protein 27 antigen and antibody levels appear to be related to the macrovascular complications associated with insulin resistance: a pilot study,” Cell Stress and Chaperones, vol. 15, no. 4, pp. 379–386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. R. S. Price, D. A. Cavazos, R. E. de Angel, S. D. Hursting, and L. A. DeGraffenried, “Obesity-related systemic factors promote an invasive phenotype in prostate cancer cells,” Prostate Cancer and Prostatic Diseases, vol. 15, no. 2, pp. 135–143, 2012. View at Publisher · View at Google Scholar
  167. J. H. Gunter, A. A. Lubik, I. McKenzie, M. Pollak, and C. C. Nelson, “The interactions between insulin and androgens in progression to castrate-resistant prostate cancer,” Advances in Urology, vol. 2012, Article ID 248607, 11 pages, 2012. View at Publisher · View at Google Scholar
  168. B. S. Carver, C. Chapinski, J. Wongvipat et al., “Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate Ccancer,” Cancer Cell, vol. 19, no. 5, pp. 575–586, 2011. View at Publisher · View at Google Scholar · View at Scopus
  169. M. Kaarbø, O. L. Mikkelsen, L. Malerød et al., “PI3K-AKT-mTOR pathway is dominant over androgen receptor signaling in prostate cancer cells,” Cellular Oncology, vol. 32, no. 1-2, pp. 11–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  170. D. J. Mulholland, L. M. Tran, Y. Li et al., “Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth,” Cancer Cell, vol. 19, no. 6, pp. 792–804, 2011. View at Publisher · View at Google Scholar · View at Scopus
  171. L. Xin, M. A. Teitell, D. A. Lawson, A. Kwon, I. K. Mellinghoff, and O. N. Witte, “Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 20, pp. 7789–7794, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. B. S. Carver, C. Chapinski, J. Wongvipat et al., “Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer,” Cancer Cell, vol. 19, no. 5, pp. 575–586, 2011. View at Publisher · View at Google Scholar · View at Scopus
  173. K. Malinowska, H. Neuwirt, I. T. Cavarretta et al., “Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor,” Endocrine-Related Cancer, vol. 16, no. 1, pp. 155–169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. D. R. Robinson, C. R. Zylstra, and B. O. Williams, “Wnt signaling and prostate cancer,” Current Drug Targets, vol. 9, no. 7, pp. 571–580, 2008. View at Publisher · View at Google Scholar · View at Scopus
  175. A. Seaton, P. Scullin, P. J. Maxwell et al., “Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation,” Carcinogenesis, vol. 29, no. 6, pp. 1148–1156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  176. D. E. Frigo, M. K. Howe, B. M. Wittmann et al., “CaM kinase kinase β-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells,” Cancer Research, vol. 71, no. 2, pp. 528–537, 2011. View at Publisher · View at Google Scholar · View at Scopus
  177. C. E. Massie, A. Lynch, A. Ramos-Montoya et al., “The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis,” The EMBO Journal, vol. 30, no. 13, pp. 2719–2733, 2011. View at Publisher · View at Google Scholar · View at Scopus
  178. R. J. Shaw, N. Bardeesy, B. D. Manning et al., “The LKB1 tumor suppressor negatively regulates mTOR signaling,” Cancer Cell, vol. 6, no. 1, pp. 91–99, 2004. View at Publisher · View at Google Scholar · View at Scopus
  179. P. H. Kodaman and A. J. Duleba, “HMG-CoA reductase inhibitors: do they have potential in the treatment of polycystic ovary syndrome?” Drugs, vol. 68, no. 13, pp. 1771–1785, 2008. View at Publisher · View at Google Scholar · View at Scopus
  180. X. Zheng, X. X. Cui, Z. Gao et al., “Atorvastatin and celecoxib in combination inhibits the progression of androgen-dependent LNCaP xenograft prostate tumors to androgen independence,” Cancer Prevention Research, vol. 3, no. 1, pp. 114–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  181. J. V. Swinnen, T. Roskams, S. Joniau et al., “Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer,” International Journal of Cancer, vol. 98, no. 1, pp. 19–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  182. M. H. Rashid and U. B. Chaudhary, “Intermittent androgen deprivation therapy for prostate cancer,” Oncologist, vol. 9, no. 3, pp. 295–301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  183. H. I. Scher and C. L. Sawyers, “Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis,” Journal of Clinical Oncology, vol. 23, no. 32, pp. 8253–8261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  184. A. So, M. Gleave, A. Hurtado-Col, and C. Nelson, “Mechanisms of the development of androgen independence in prostate cancer,” World Journal of Urology, vol. 23, no. 1, pp. 1–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  185. M. Stanbrough, G. J. Bubley, K. Ross et al., “Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer,” Cancer Research, vol. 66, no. 5, pp. 2815–2825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  186. A. J. Redig and H. G. Munshi, “Care of the cancer survivor: metabolic syndrome after hormone-modifying therapy,” The American Journal of Medicine, vol. 123, no. 1, pp. 87.e1–87.e6, 2010. View at Publisher · View at Google Scholar · View at Scopus