Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2014, Article ID 428764, 10 pages
http://dx.doi.org/10.1155/2014/428764
Review Article

S-Nitrosation and Ubiquitin-Proteasome System Interplay in Neuromuscular Disorders

1Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
2Research Center, IRCCS San Raffaele Pisana, 00166 Rome, Italy

Received 24 May 2013; Revised 18 November 2013; Accepted 21 November 2013; Published 30 January 2014

Academic Editor: Alessio Cardinale

Copyright © 2014 Salvatore Rizza et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Q. Schafer and G. R. Buettner, “Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple,” Free Radical Biology and Medicine, vol. 30, no. 11, pp. 1191–1212, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Di Giacomo, S. Rizza, C. Montagna, and G. Filomeni, “Established principles and emerging concepts on the interplay between mitochondrial physiology and S-(de)nitrosylation: implications in cancer and neurodegeneration,” International Journa of Cell Biology, vol. 2012, Article ID 361872, 20 pages, 2012. View at Publisher · View at Google Scholar
  3. Z. Gu, M. Kaul, B. Yan et al., “S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death,” Science, vol. 297, no. 5584, pp. 1186–1190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. Marietta, “Nitric oxide synthase: aspects concerning structure and catalysis,” Cell, vol. 78, no. 6, pp. 927–930, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. O. W. Griffith and D. J. Stuehr, “Nitric oxide synthases: properties and catalytic mechanism,” Annual Review of Physiology, vol. 57, pp. 707–736, 1995. View at Google Scholar · View at Scopus
  6. R. M. Rapoport, M. B. Draznin, and F. Murad, “Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation,” Nature, vol. 306, no. 5939, pp. 174–176, 1983. View at Google Scholar · View at Scopus
  7. R. M. J. Palmer, A. G. Ferrige, and S. Moncada, “Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor,” Nature, vol. 327, no. 6122, pp. 524–526, 1987. View at Google Scholar · View at Scopus
  8. C. Bogdan, “Nitric oxide and the immune response,” Nature Immunology, vol. 2, no. 10, pp. 907–916, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J. R. Steinert, S. W. Robinson, H. Tong, M. D. Haustein, C. Kopp-Scheinpflug, and I. D. Forsythe, “Nitric oxide is an activity-dependent regulator of target neuron intrinsic excitability,” Neuron, vol. 71, no. 2, pp. 291–305, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. G. C. Brown, “Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase,” Biochimica et Biophysica Acta, vol. 1504, no. 1, pp. 46–57, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. J. P. Collman, A. Dey, R. A. Decreau et al., “Interaction of nitric oxide with a functional model of cytochrome c oxidase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 29, pp. 9892–9896, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. G. Mason, P. Nicholls, M. T. Wilson, and C. E. Cooper, “Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 3, pp. 708–713, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. D. T. Hess, A. Matsumoto, S.-O. Kim, H. E. Marshall, and J. S. Stamler, “Protein S-nitrosylation: purview and parameters,” Nature Reviews Molecular Cell Biology, vol. 6, no. 2, pp. 150–166, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Martínez-Ruiz and S. Lamas, “S-nitrosylation: a potential new paradigm in signal transduction,” Cardiovascular Research, vol. 62, no. 1, pp. 43–52, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M.-C. Broillet, “S-nitrosylation of proteins,” Cellular and Molecular Life Sciences, vol. 55, no. 8-9, pp. 1036–1042, 1999. View at Google Scholar · View at Scopus
  16. L. Liu, A. Hausladen, M. Zeng, L. Que, J. Heitman, and J. S. Stamler, “A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans,” Nature, vol. 410, no. 6827, pp. 490–494, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. J. B. Mannick, A. Hausladen, L. Liu et al., “Fas-induced caspase denitrosylation,” Science, vol. 284, no. 5414, pp. 651–654, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Benhar, M. T. Forrester, and J. S. Stamler, “Protein denitrosylation: enzymatic mechanisms and cellular functions,” Nature Reviews Molecular Cell Biology, vol. 10, no. 10, pp. 721–732, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Radi, “Nitric oxide, oxidants, and protein tyrosine nitration,” Proceedings of the National Academy of Sciences of the USA, vol. 101, no. 12, pp. 4003–4008, 2004. View at Google Scholar
  20. J. S. Beckman, “Oxidative damage and tyrosine nitration from peroxynitrite,” Chemical Research in Toxicology, vol. 9, no. 5, pp. 836–844, 1996. View at Google Scholar · View at Scopus
  21. J. S. Stamler, S. Lamas, and F. C. Fang, “Nitrosylation: the prototypic redox-based signaling mechanism,” Cell, vol. 106, no. 6, pp. 675–683, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. J. S. Stamler, E. J. Toone, S. A. Lipton, and N. J. Sucher, “(S)NO signals: translocation, regulation, and a consensus motif,” Neuron, vol. 18, no. 5, pp. 691–696, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Marino and V. N. Gladyshev, “Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation,” Journal of Molecular Biology, vol. 395, no. 4, pp. 844–859, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. G. P. H. Ho, B. Selvakumar, J. Mukai et al., “S-nitrosylation and S-palmitoylation reciprocally regulate synaptic targeting of PSD-95,” Neuron, vol. 71, no. 1, pp. 131–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Nakamura and S. A. Lipton, “Emerging role of protein-protein transnitrosylation in cell signaling pathways,” Antioxidants and Redox Signaling, vol. 18, no. 3, pp. 239–249, 2013. View at Google Scholar
  26. C. Wu, T. Liu, W. Chen et al., “Redox regulatory mechanism of transnitrosylation by thioredoxin,” Molecular and Cellular Proteomics, vol. 9, no. 10, pp. 2262–2275, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. R. Pawloski, D. T. Hes, and J. S. Stamler, “Export by red blood cells of nitric oxide bioactivity,” Nature, vol. 409, no. 6820, pp. 622–626, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Benhar, M. T. Forrester, D. T. Hess, and J. S. Stamler, “Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins,” Science, vol. 320, no. 5879, pp. 1050–1054, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Suzuki, Y. Nakabayashi, and R. Takahashi, “Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 15, pp. 8662–8667, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Nakamura, L. Wang, C. C. L. Wong et al., “Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death,” Molecular Cell, vol. 39, no. 2, pp. 184–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. D. Kornberg, N. Sen, M. R. Hara et al., “GAPDH mediates nitrosylation of nuclear proteins,” Nature Cell Biology, vol. 12, no. 11, pp. 1094–1100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Sawa, A. A. Khan, L. D. Hester, and S. H. Snyder, “Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 21, pp. 11669–11674, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Meuer, I. E. Suppanz, P. Lingor et al., “Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis,” Cell Death and Differentiation, vol. 14, no. 4, pp. 651–661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Holmgren, “Biochemistry: SNO removal,” Science, vol. 320, no. 5879, pp. 1019–1020, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Sengupta, S. W. Ryter, B. S. Zuckerbraun, E. Tzeng, T. R. Billiar, and D. A. Stoyanovsky, “Thioredoxin catalyzes the denitrosation of low-molecular mass and protein S-nitrosothiols,” Biochemistry, vol. 46, no. 28, pp. 8472–8483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. D. T. Hess and J. S. Stamler, “Regulation by S-nitrosylation of protein post-translational modification,” The Journal of Biological Chemistry, vol. 287, no. 7, pp. 4411–4418, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. H.-S. Park, J.-W. Yu, J.-H. Cho et al., “Inhibition of apoptosis signal-regulating kinase 1 by nitric oxide through a thiol redox mechanism,” The Journal of Biological Chemistry, vol. 279, no. 9, pp. 7584–7590, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. H.-S. Park, S.-H. Huh, M.-S. Kim, S. H. Lee, and E.-J. Choi, “Nitric oxide negatively regulates c-Jun N-terminal kinase/stress-activated protein kinase by means of S-nitrosylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 26, pp. 14382–14387, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. H.-S. Park, J.-S. Mo, and E.-J. Choi, “Nitric oxide inhibits an interaction between JNK1 and c-Jun through nitrosylation,” Biochemical and Biophysical Research Communications, vol. 351, no. 1, pp. 281–286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Filomeni, G. Rotilio, and M. R. Ciriolo, “Disulfide relays and phosphorylative cascades: partners in redox-mediated signaling pathways,” Cell Death and Differentiation, vol. 12, no. 12, pp. 1555–1563, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Nott, P. M. Watson, J. D. Robinson, L. Crepaldi, and A. Riccio, “S-nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons,” Nature, vol. 455, no. 7211, pp. 411–415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Obin, F. Shang, X. Gong, G. Handelman, J. Blumberg, and A. Taylor, “Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide,” FASEB Journal, vol. 12, no. 7, pp. 561–569, 1998. View at Google Scholar · View at Scopus
  43. J. Jahngen-Hodge, M. S. Obin, X. Gong et al., “Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress,” The Journal of Biological Chemistry, vol. 272, no. 45, pp. 28218–28226, 1997. View at Publisher · View at Google Scholar · View at Scopus
  44. K. S. Doris, E. L. Rumsby, and B. A. Morgan, “Oxidative stress responses involve oxidation of a conserved ubiquitin pathway enzyme,” Molecular and Cellular Biology, vol. 32, no. 21, pp. 4472–4481, 2012. View at Google Scholar
  45. G. Bossis and F. Melchior, “Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes,” Molecular Cell, vol. 21, no. 3, pp. 349–357, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Ciechanover, “The ubiquitin-proteasome proteolytic pathway,” Cell, vol. 79, no. 1, pp. 13–21, 1994. View at Publisher · View at Google Scholar · View at Scopus
  47. V. Kirkin, D. G. McEwan, I. Novak, and I. Dikic, “A role for ubiquitin in selective autophagy,” Molecular Cell, vol. 34, no. 3, pp. 259–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. A. L. Goldberg and K. L. Rock, “Proteolysis, proteasomes and antigen presentation,” Nature, vol. 357, no. 6377, pp. 375–379, 1992. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Vucic, V. M. Dixit, and I. E. Wertz, “Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death,” Nature Reviews Molecular Cell Biology, vol. 12, no. 7, pp. 439–452, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Mocciaro and M. Rape, “Emerging regulatory mechanisms in ubiquitindependent cell cycle control,” Journal of Cell Science, vol. 125, no. 2, pp. 255–263, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. D. E. Wright, C.-Y. Wang, and C.-F. Kao, “Histone ubiquitylation and chromatin dynamics,” Frontiers in Bioscience, vol. 17, no. 3, pp. 1051–1078, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Nakamura and S. A. Lipton, “S-nitrosylation of critical protein thiols mediates protein misfolding and mitochondrial dysfunction in neurodegenerative diseases,” Antioxidants and Redox Signaling, vol. 14, no. 8, pp. 1479–1492, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. K. K. K. Chung, B. Thomas, X. Li et al., “S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function,” Science, vol. 304, no. 5675, pp. 1328–1331, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. A. H. K. Tsang, Y.-I. L. Lee, H. S. Ko et al., “S-nitrosylation of XIAP compromises neuronal survival in Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 12, pp. 4900–4905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. M. R. Kapadia, J. W. Eng, Q. Jiang, D. A. Stoyanovsky, and M. R. Kibbe, “Nitric oxide regulates the 26S proteasome in vascular smooth muscle cells,” Nitric Oxide, vol. 20, no. 4, pp. 279–288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. A. J. Obaya and J. M. Sedivy, “Regulation of cyclin-Cdk activity in mammalian cells,” Cellular and Molecular Life Sciences, vol. 59, no. 1, pp. 126–142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Azad, V. Vallyathan, L. Wang et al., “S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation: a novel antiapoptotic mechanism that suppresses apoptosis,” The Journal of Biological Chemistry, vol. 281, no. 45, pp. 34124–34134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Chanvorachote, U. Nimmannit, L. Wang et al., “Nitric oxide negatively regulates Fas CD95-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of FLICE inhibitory protein,” The Journal of Biological Chemistry, vol. 280, no. 51, pp. 42044–42050, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. R.-G. Hu, J. Sheng, X. Qi, Z. Xu, T. T. Takahashi, and A. Varshavsky, “The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators,” Nature, vol. 437, no. 7061, pp. 981–986, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. N. L. Reynaert, K. Ckless, S. H. Korn et al., “Nitric oxide represses inhibitory κB kinase through S-nitrosylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 24, pp. 8945–8950, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. D. J. Glass, “Molecular mechanisms modulating muscle mass,” Trends in Molecular Medicine, vol. 9, no. 8, pp. 344–350, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. W. Wei, B. Li, M. A. Hanes, S. Kakar, X. Chen, and L. Liu, “S-nitrosylation from GSNOR deficiency impairs DNA repair and promotes hepatocarcinogenesis,” Science Translational Medicine, vol. 2, no. 19, Article ID 19ra13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Karin and Y. Ben-Neriah, “Phosphorylation meets ubiquitination: the control of NF-κB activity,” Annual Review of Immunology, vol. 18, pp. 621–663, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. S. C. Bodine, E. Latres, S. Baumhueter et al., “Identification of ubiquitin ligases required for skeletal Muscle Atrophy,” Science, vol. 294, no. 5547, pp. 1704–1708, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. M. D. Gomes, S. H. Lecker, R. T. Jagoe, A. Navon, and A. L. Goldberg, “Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 25, pp. 14440–14445, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. H. C. Lehmann, A. Köhne, G. M. Zu Hörste et al., “Role of nitric oxide as mediator of nerve injury in inflammatory neuropathies,” Journal of Neuropathology and Experimental Neurology, vol. 66, no. 4, pp. 305–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. J. M. Souza, G. Peluffo, and R. Radi, “Protein tyrosine nitration-Functional alteration or just a biomarker?” Free Radical Biology and Medicine, vol. 45, no. 4, pp. 357–366, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. R. W. R. Dudley, G. Danialou, K. Govindaraju, L. Lands, D. E. Eidelman, and B. J. Petrof, “Sarcolemmal damage in dystrophin deficiency is modulated by synergistic interactions between mechanical and oxidative/nitrosative stresses,” The American Journal of Pathology, vol. 168, no. 4, pp. 1276–1287, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. J. E. Brenman, D. S. Chao, H. Xia, K. Aldape, and D. S. Bredt, “Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy,” Cell, vol. 82, no. 5, pp. 743–752, 1995. View at Google Scholar · View at Scopus
  70. Z. Grozdanovic, “NO message from muscle,” Microscopy Research and Technique, vol. 55, no. 3, pp. 148–153, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Suzuki, N. Motohashi, A. Uezumi et al., “NO production results in suspension-induced muscle atrophy through dislocation of neuronal NOS,” Journal of Clinical Investigation, vol. 117, no. 9, pp. 2468–2476, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. T. S. Khurana and K. E. Davies, “Pharmacological strategies for muscular dystrophy,” Nature Reviews Drug Discovery, vol. 2, no. 5, pp. 379–390, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. R. H. Crosbie, R. Barresi, and K. P. Campbell, “Loss of sarcolemma nNOS in sarcoglycan-deficient muscle,” FASEB Journal, vol. 16, no. 13, pp. 1786–1791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Li, Y. Yue, Y. Lai, C. H. Hakim, and D. Duan, “Nitrosative stress elicited by nNOSμ delocalization inhibits muscle force in dystrophin-null mice,” Journal of Pathology, vol. 223, no. 1, pp. 88–98, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Sun, C. Xin, J. P. Eu, J. S. Stamler, and G. Meissner, “Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11158–11162, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. A. M. Bellinger, S. Reiken, C. Carlson et al., “Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle,” Nature Medicine, vol. 15, no. 3, pp. 325–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. Z. Gu, T. Nakamura, and S. A. Lipton, “Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases,” Molecular Neurobiology, vol. 41, no. 2-3, pp. 55–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Sandri, C. Sandri, A. Gilbert et al., “Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy,” Cell, vol. 117, no. 3, pp. 399–412, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. S. H. Lecker, R. T. Jagoe, A. Gilbert et al., “Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression,” FASEB Journal, vol. 18, no. 1, pp. 39–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Martínez-Moreno, A. Martínez-Ruiz, A. Álvarez-Barrientos, F. Gavilanes, S. Lamas, and I. Rodríguez-Crespo, “Nitric oxide down-regulates caveolin-3 levels through the interaction with myogenin, its transcription factor,” The Journal of Biological Chemistry, vol. 282, no. 32, pp. 23044–23054, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. R. R. Kohn, “Denervation muscle atrophy: an autolytic system in vitro,” The American Journal of Pathology, vol. 47, pp. 315–323, 1965. View at Google Scholar · View at Scopus
  82. M. Kaneki, N. Shimizu, D. Yamada, and K. Chang, “Nitrosative stress and pathogenesis of insulin resistance,” Antioxidants and Redox Signaling, vol. 9, no. 3, pp. 319–329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. M.-A. Choe and G. J. An, “Effects of nitric oxide synthase inhibitor on hindlimb muscles in rats with neuropathic pain induced by unilateral peripheral nerve injury,” Journal of Korean Academy of Nursing, vol. 41, no. 4, pp. 520–527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. T. Miyamoto, A. E. Dublin, M. J. Petrus, and A. Patapoutian, “TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice,” PLoS ONE, vol. 4, no. 10, Article ID e7596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Yoshida, R. Inoue, T. Morii et al., “Nitric oxide activates TRP channels by cysteine S-nitrosylation,” Nature Chemical Biology, vol. 2, no. 11, pp. 596–607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. D.-H. Cho, T. Nakamura, J. Fang et al., “β-Amyloid-related mitochondrial fission and neuronal injury,” Science, vol. 324, no. 5923, pp. 102–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Nakamura and S. A. Lipton, “Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer's and Parkinson's diseases,” Apoptosis, vol. 15, no. 11, pp. 1354–1363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. M. R. Khazaei, E. C. Bunk, A.-L. Hillje et al., “The E3-ubiquitin ligase TRIM2 regulates neuronal polarization,” Journal of Neurochemistry, vol. 117, no. 1, pp. 29–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. E. Ylikallio, R. Poyhonen, M. Zimon et al., “Deficiency of the E3 ubiquitin ligase TRIM2 in early-onset axonal neuropathy,” Human Molecular Genetics, vol. 22, no. 15, pp. 2975–2983, 2013. View at Publisher · View at Google Scholar
  90. M. Balastik, F. Ferraguti, A. Pires-da Silva et al., “Deficiency in ubiquitin ligase TRIM2 causes accumulation of neurofilament light chain and neurodegeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 33, pp. 12016–12021, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Sugiura, R. Yonashiro, T. Fukuda et al., “A mitochondrial ubiquitin ligase MITOL controls cell toxicity of polyglutamine-expanded protein,” Mitochondrion, vol. 11, no. 1, pp. 139–146, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Yonashiro, A. Sugiura, M. Miyachi et al., “Mitochondrial ubiquitin ligase MITOL ubiquitinates mutant SOD1 and attenuates mutant SOD1-induced reactive oxygen species generation,” Molecular Biology of the Cell, vol. 20, no. 21, pp. 4524–4530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. R. Yonashiro, Y. Kimijima, T. Shimura et al., “Mitochondrial ubiquitin ligase MITOL blocks S-nitrosylated MAP1B-light chain 1-mediated mitochondrial dysfunction and neuronal cell death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 7, pp. 2382–2387, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. M. B. Reid, D. S. Stokić, S. M. Koch, F. A. Khawli, and A. A. Leis, “N-acetylcysteine inhibits muscle fatigue in humans,” Journal of Clinical Investigation, vol. 94, no. 6, pp. 2468–2474, 1994. View at Google Scholar · View at Scopus
  95. J. S. Stamler, Q.-A. Sun, and D. T. Hess, “A SNO storm in skeletal muscle,” Cell, vol. 133, no. 1, pp. 33–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. N. P. Whitehead, C. Pham, O. L. Gervasio, and D. G. Allen, “N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice,” Journal of Physiology, vol. 586, no. 7, pp. 2003–2014, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Fang, T. Nakamura, D.-H. Cho, Z. Gu, and S. A. Lipton, “S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18742–18747, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Uehara, T. Nakamura, D. Yao et al., “S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration,” Nature, vol. 441, no. 7092, pp. 513–517, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. D. R. Gonzalez, F. Beigi, A. V. Treuer, and J. M. Hare, “Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 51, pp. 20612–20617, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. D. C. Andersson, A. C. Meli, S. Reiken et al., “Leaky ryanodine receptors in β-sarcoglycan deficient mice: a potential common defect in muscular dystrophy,” Skeletal Muscle, vol. 2, no. 1, p. 9, 2012. View at Google Scholar