Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2014, Article ID 519153, 9 pages
http://dx.doi.org/10.1155/2014/519153
Review Article

An Intimate Relationship between ROS and Insulin Signalling: Implications for Antioxidant Treatment of Fatty Liver Disease

1Division of Cardiovascular and Metabolic Diseases, Institut de Recherches Cliniques de Montreal 110, Avenue des Pins Ouest, Montreal, QC, Canada H2W 1R7
2Molecular Biology Department, University of Montreal, Montreal, QC, Canada H3C 3J7

Received 20 June 2013; Accepted 20 December 2013; Published 12 February 2014

Academic Editor: Julie St-Pierre

Copyright © 2014 Aurèle Besse-Patin and Jennifer L. Estall. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Y. Hui, V. W.-S. Wong, H. L.-Y. Chan et al., “Histological progression of non-alcoholic fatty liver disease in Chinese patients,” Alimentary Pharmacology & Therapeutics, vol. 21, no. 4, pp. 407–413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. V. W. Wong, G. L.-H. Wong, P. C.-L. Choi et al., “Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years,” Gut, vol. 59, no. 7, pp. 969–974, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. C. Cohen, J. D. Horton, and H. H. Hobbs, “Human fatty liver disease: old questions and new insights,” Science, vol. 332, no. 6037, pp. 1519–1523, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. E. M. Brunt, “Pathology of nonalcoholic fatty liver disease,” Nature Reviews Gastroenterology & Hepatology, vol. 7, no. 4, pp. 195–203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. B. W. Smith and L. A. Adams, “Nonalcoholic fatty liver disease and diabetes mellitus: pathogenesis and treatment,” Nature Reviews Endocrinology, vol. 7, pp. 456–465, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Targher, C. P. Day, and E. Bonora, “Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease,” The New England Journal of Medicine, vol. 363, no. 14, pp. 1341–1350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. B. Schwimmer, P. E. Pardee, J. E. Lavine, A. K. Blumkin, and S. Cook, “Cardiovascular risk factors and the metabolic syndrome in pediatric nonalcoholic fatty liver disease,” Circulation, vol. 118, no. 3, pp. 277–283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. S. Kahn, “The lipid accumulation product is better than BMI for identifying diabetes: a population-based comparison,” Diabetes Care, vol. 29, no. 1, pp. 151–153, 2006. View at Google Scholar · View at Scopus
  9. G. Musso, R. Gambino, S. Bo, and M. Cassader, “Should nonalcoholic fatty liver disease be included in the definition of metabolic syndrome? A cross-sectional comparison with adult treatment panel III criteria in nonobese nondiabetic subjects,” Diabetes Care, vol. 31, no. 3, pp. 562–568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. Ascha, I. A. Hanouneh, R. Lopez, T. A.-R. Tamimi, A. F. Feldstein, and N. N. Zein, “The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis,” Hepatology, vol. 51, no. 6, pp. 1972–1978, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. J. Sanyal, C. Campbell-Sargent, F. Mirshahi et al., “Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities,” Gastroenterology, vol. 120, no. 5, pp. 1183–1192, 2001. View at Google Scholar · View at Scopus
  12. K. Begriche, A. Igoudjil, D. Pessayre, and B. Fromenty, “Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it,” Mitochondrion, vol. 6, no. 1, pp. 1–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Cortez-Pinto, J. Chatham, V. P. Chacko, C. Arnold, A. Rashid, and A. M. Diehl, “Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study,” Journal of the American Medical Association, vol. 282, no. 17, pp. 1659–1664, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Hensley, K. A. Robinson, S. P. Gabbita, S. Salsman, and R. A. Floyd, “Reactive oxygen species, cell signaling, and cell injury,” Free Radical Biology and Medicine, vol. 28, no. 10, pp. 1456–1462, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Perez-Carreras, P. del Hoyo, M. A. Martín et al., “Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis,” Hepatology, vol. 38, no. 4, pp. 999–1007, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Seki, T. Kitada, T. Yamada, H. Sakaguchi, K. Nakatani, and K. Wakasa, “In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases,” Journal of Hepatology, vol. 37, no. 1, pp. 56–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. S. H. Caldwell, R. H. Swerdlow, E. M. Khan et al., “Mitochondrial abnormalities in non-alcoholic steatohepatitis,” Journal of Hepatology, vol. 31, no. 3, pp. 430–434, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Vendemiale, I. Grattagliano, P. Caraceni et al., “Mitochondrial oxidative injury energy metabolism alteration in rat fatty liver: effect of the nutritional status,” Hepatology, vol. 33, no. 4, pp. 808–815, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Marchesini, R. Marzocchi, F. Agostini, and E. Bugianesi, “Nonalcoholic fatty liver disease and the metabolic syndrome,” Current Opinion in Lipidology, vol. 16, no. 4, pp. 421–427, 2005. View at Publisher · View at Google Scholar
  20. Y. Wei, D. Wang, F. Topczewski, and M. J. Pagliassotti, “Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells,” American Journal of Physiology, vol. 291, no. 2, pp. E275–E281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Ricci, V. Pastukh, J. Leonard et al., “Mitochondrial DNA damage triggers mitochondrial-superoxide generation and apoptosis,” American Journal of Physiology, vol. 294, no. 2, pp. C413–C422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Yesilova, H. Yaman, C. Oktenli et al., “Systemic markers of lipid peroxidation and antioxidants in patients with nonalcoholic fatty liver disease,” American Journal of Gastroenterology, vol. 100, no. 4, pp. 850–855, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Letteron, B. Fromenty, B. Terris, C. Degott, and D. Pessayre, “Acute and chronic hepatic steatosis lead to in vivo lipid peroxidation in mice,” Journal of Hepatology, vol. 24, no. 2, pp. 200–208, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Q. Yang, H. Zhu, Y. Li et al., “Mitochondrial adaptations to obesity-related oxidant stress,” Archives of Biochemistry and Biophysics, vol. 378, no. 2, pp. 259–268, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Sumida, T. Nakashima, T. Yoh et al., “Serum thioredoxin levels as a predictor of steatohepatitis in patients with nonalcoholic fatty liver disease,” Journal of Hepatology, vol. 38, no. 1, pp. 32–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Sreekumar, B. Rosado, D. Rasmussen, and M. Charlton, “Hepatic gene expression in histologically progressive nonalcoholic steatohepatitis,” Hepatology, vol. 38, no. 1, pp. 244–251, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. I. A. Leclercq, “Antioxidant defence mechanisms: new players in the pathogenesis of non-alcoholic steatohepatitis?” Clinical Science, vol. 106, no. 3, pp. 235–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Robertson, I. Leclercq, and G. C. Farrell, “Nonalcoholic steatosis and steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress,” American Journal of Physiology, vol. 281, no. 5, pp. G1135–G1139, 2001. View at Google Scholar · View at Scopus
  29. B. D'autreaux and M. B. Toledano, “ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis,” Nature Reviews Molecular Cell Biology, vol. 8, no. 10, pp. 813–824, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Mittler, S. Vanderauwera, N. Suzuki et al., “ROS signaling: the new wave?” Trends in Plant Science, vol. 16, no. 6, pp. 300–309, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Ushio-Fukai, “Compartmentalization of redox signaling through NaDPH oxidase-derived rOS,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1289–1299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. W. Ryter and R. M. Tyrrell, “Singlet molecular oxygen ((1)O2): a possible effector of eukaryotic gene expression,” Free Radical Biology and Medicine, vol. 24, no. 9, pp. 1520–1534, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Zuo, F. L. Christofi, V. P. Wright, S. Bao, and T. L. Clanton, “Lipoxygenase-dependent superoxide release in skeletal muscle,” Journal of Applied Physiology, vol. 97, no. 2, pp. 661–668, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. S. S. Korshunov, V. P. Skulachev, and A. A. Starkov, “High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria,” FEBS Letters, vol. 416, no. 1, pp. 15–18, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Chen, S. E. Craige, and J. F. Keaney, “Downstream targets and intracellular compartmentalization in nox signaling,” Antioxidants & Redox Signaling, vol. 11, no. 10, pp. 2467–2480, 2009. View at Google Scholar · View at Scopus
  36. J. F. Turrens, “Mitochondrial formation of reactive oxygen species,” The Journal of Physiology, vol. 552, no. 2, pp. 335–344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. M. P. Murphy, “How mitochondria produce reactive oxygen species,” Biochemical Journal, vol. 417, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. V. P. Skulachev, “Uncoupling: new approaches to an old problem of bioenergetics,” Biochimica et Biophysica Acta, vol. 1363, no. 2, pp. 100–124, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. A. J. Lambert and M. D. Brand, “Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I),” Journal of Biological Chemistry, vol. 279, no. 38, pp. 39414–39420, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. V. P. Skulachev, “Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants,” Quarterly Reviews of Biophysics, vol. 29, no. 2, pp. 169–202, 1996. View at Google Scholar · View at Scopus
  41. M. Okuda, H.-C. Lee, C. Kumar, and B. Chance, “Comparison of the effect of a mitochondrial uncoupler, 2,4-dinitrophenol and adrenaline on oxygen radical production in the isolated perfused rat liver,” Acta Physiologica Scandinavica, vol. 145, no. 2, pp. 159–168, 1992. View at Google Scholar · View at Scopus
  42. M. P. Murphy, K. S. Echtay, F. H. Blaikie et al., “Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria- targeted spin trap derived from α-phenyl-N-tert-butylnitrone,” Journal of Biological Chemistry, vol. 278, no. 49, pp. 48534–48545, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. R. C. Scarpulla, “Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network,” Biochimica et Biophysica Acta, vol. 1813, no. 7, pp. 1269–1278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. A. P. Rolo, A. P. Gomes, and C. M. Palmeira, “Regulation of mitochondrial biogenesis in metabolic syndrome,” Current Drug Targets, vol. 12, no. 6, pp. 872–878, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Aharoni-Simon, M. Hann-Obercyger, S. Pen, Z. Madar, and O. Tirosh, “Fatty liver is associated with impaired activity of PPARγ-coactivator 1α (PGC1α) and mitochondrial biogenesis in mice,” Laboratory Investigation, vol. 91, no. 7, pp. 1018–1028, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Wang, A. Kamat, P. Pergola, A. Swamy, F. Tio, and K. Cusi, “Metabolic factors in the development of hepatic steatosis and altered mitochondrial gene expression in vivo,” Metabolism, vol. 60, no. 8, pp. 1090–1099, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Nadal-Casellas, E. Amengual-Cladera, A. M. Proenza, I. Lladó, and M. Gianotti, “Long-term high-fat-diet feeding impairs mitochondrial biogenesis in liver of male and female rats,” Cellular Physiology and Biochemistry, vol. 26, no. 3, pp. 291–302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. J. L. Estall, J. L. Ruas, C. S. Choi et al., “PGC-1α negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erbα axis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 52, pp. 22510–22515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. K. T. Chambers, Z. Chen, P. A. Crawford et al., “Liver-specific PGC-1beta deficiency leads to impaired mitochondrial function and lipogenic response to fasting-refeeding,” PLoS ONE, vol. 7, no. 12, Article ID e52645, 2012. View at Publisher · View at Google Scholar
  50. J. St-Pierre, S. Drori, M. Uldry et al., “Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators,” Cell, vol. 127, no. 2, pp. 397–408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. X. Kong, R. Wang, Y. Xue et al., “Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis,” PLoS ONE, vol. 5, no. 7, Article ID e11707, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. J. He, B. Hu, X. Shi et al., “Activation of the aryl hydrocarbon receptor sensitizes mice to nonalcoholic steatohepatitis by deactivating mitochondrial sirtuin deacetylase Sirt3,” Molecular and Cellular Biology, vol. 33, no. 10, pp. 2047–2055, 2013. View at Publisher · View at Google Scholar
  53. C. Canto and J. Auwerx, “PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure,” Current Opinion in Lipidology, vol. 20, no. 2, pp. 98–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. X. Q. Deng, L. L. Chen, and N. X. Li, “The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats,” Liver International, vol. 27, no. 5, pp. 708–715, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. R. H. Wang, H.-S. Kim, C. Xiao, X. Xu, O. Gavrilova, and C.-X. Deng, “Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance,” The Journal of Clinical Investigation, vol. 121, no. 11, pp. 4477–4490, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Serviddio, F. Bellanti, J. Sastre, G. Vendemiale, and E. Altomare, “Targeting mitochondria: a new promising approach for the treatment of liver diseases,” Current Medicinal Chemistry, vol. 17, no. 22, pp. 2325–2337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Houstis, E. D. Rosen, and E. S. Lander, “Reactive oxygen species have a causal role in multiple forms of insulin resistance,” Nature, vol. 440, no. 7086, pp. 944–948, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. E. J. Anderson, M. E. Lustig, K. E. Boyle et al., “Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans,” The Journal of Clinical Investigation, vol. 119, no. 3, pp. 573–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. H. H. Szeto, “Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury,” Antioxidants & Redox Signaling, vol. 10, no. 3, pp. 601–619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Zhao, G.-M. Zhao, D. Wu et al., “Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury,” Journal of Biological Chemistry, vol. 279, no. 33, pp. 34682–34690, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Nakamura, T. Takamura, N. Matsuzawa-Nagata et al., “Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria,” Journal of Biological Chemistry, vol. 284, no. 22, pp. 14809–14818, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Chen, R. Na, M. Gu et al., “Reduction of mitochondrial H2O2 by overexpressing peroxiredoxin 3 improves glucose tolerance in mice,” Aging Cell, vol. 7, no. 6, pp. 866–878, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Y. Lee, C. S. Choi, A. L. Birkenfeld et al., “Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance,” Cell Metabolism, vol. 12, no. 6, pp. 668–674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. J. O. Holloszy, “‘Deficiency’ of mitochondria in muscle does not cause insulin resistance,” Diabetes, vol. 62, no. 4, pp. 1036–1040, 2013. View at Publisher · View at Google Scholar
  65. E. D. O'neill, J. P. H. Wilding, C. R. Kahn et al., “Absence of insulin signalling in skeletal muscle is associated with reduced muscle mass and function: evidence for decreased protein synthesis and not increased degradation,” Age, vol. 32, no. 2, pp. 209–222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. N. Matsuzawa-Nagata, T. Takamura, H. Ando et al., “Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity,” Metabolism, vol. 57, no. 8, pp. 1071–1077, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Bonnard, A. Durand, S. Peyrol et al., “Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice,” The Journal of Clinical Investigation, vol. 118, no. 2, pp. 789–800, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Barazzoni, M. Zanetti, G. G. Cappellari et al., “Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-κB inhibitor (IκB)-nuclear factor-κB (NFκB) activation in rat muscle, in the absence of mitochondrial dysfunction,” Diabetologia, vol. 55, no. 3, pp. 773–782, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. T. L. Merry, M. Tran, M. Stathopoulos et al., “High fat fed obese Gpx1-deficient mice exhibit defective insulin secretion but protection from hepatic steatosis and liver damage,” Antioxidants & Redox Signaling, 2013. View at Publisher · View at Google Scholar
  70. H. J. Forman, “Reactive oxygen species and α,β-unsaturated aldehydes as second messengers in signal transduction,” Annals of the New York Academy of Sciences, vol. 1203, pp. 35–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. D. P. Jones, “Radical-free biology of oxidative stress,” American Journal of Physiology, vol. 295, no. 4, pp. C849–C868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Chiarugi, “PTPs versus PTKs: the redox side of the coin,” Free Radical Research, vol. 39, no. 4, pp. 353–364, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. N. K. Tonks, “Redox redux: revisiting PTPs and the control of cell signaling,” Cell, vol. 121, no. 5, pp. 667–670, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. T. D. Foley, L. A. Petro, C. M. Stredny, and T. M. Coppa, “Oxidative inhibition of protein phosphatase 2A activity: role of catalytic subunit disulfides,” Neurochemical Research, vol. 32, no. 11, pp. 1957–1964, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. V. P. Wright, P. J. Reiser, and T. L. Clanton, “Redox modulation of global phosphatase activity and protein phosphorylation in intact skeletal muscle,” The Journal of Physiology, vol. 587, no. 23, pp. 5767–5781, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Barford, A. K. Das, and M. P. Egloff, “The structure and mechanism of protein phosphatases: insights into catalysis and regulation,” Annual Review of Biophysics and Biomolecular Structure, vol. 27, pp. 133–164, 1998. View at Publisher · View at Google Scholar · View at Scopus
  77. J. S. Fetrow, N. Siew, and J. Skolnick, “Structure-based functional motif identifies a potential disulfide oxidoreductase active site in the serine/threonine protein phosphatase-1 subfamily,” FASEB Journal, vol. 13, no. 13, pp. 1866–1874, 1999. View at Google Scholar · View at Scopus
  78. P. Maher, “Redox control of neural function: background, mechanisms, and significance,” Antioxidants & Redox Signaling, vol. 8, no. 11-12, pp. 1941–1970, 2006. View at Google Scholar · View at Scopus
  79. J. Dasgupta, S. Kar, R. Liu et al., “Reactive oxygen species control senescence-associated matrix metalloproteinase-1 through c-Jun-N-terminal kinase,” Journal of Cellular Physiology, vol. 225, no. 1, pp. 52–62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. T. M. Covey, K. Edes, G. S. Coombs, D. M. Virshup, and F. A. Fitzpatrick, “Alkylation of the tumor suppressor PTEN activates Akt and β-catenin signaling: a mechanism linking inflammation and oxidative stress with cancer,” PLoS ONE, vol. 5, no. 10, Article ID e13545, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Lu, S. Ren, P. Korge et al., “A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development,” Genes and Development, vol. 21, no. 7, pp. 784–796, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. N. Bashan, J. Kovsan, I. Kachko, H. Ovadia, and A. Rudich, “Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species,” Physiological Reviews, vol. 89, no. 1, pp. 27–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. B. J. Goldstein, K. Mahadev, X. Wu, L. Zhu, and H. Motoshima, “Role of insulin-induced reactive oxygen species in the insulin signaling pathway,” Antioxidants & Redox Signaling, vol. 7, no. 7-8, pp. 1021–1031, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Iwakami, H. Misu, T. Takeda et al., “Concentration-dependent dual effects of hydrogen peroxide on insulin signal transduction in H4IIEC hepatocytes,” PLoS ONE, vol. 6, no. 11, Article ID e27401, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. K. Mahadev, H. Motoshima, X. Wu et al., “The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction,” Molecular and Cellular Biology, vol. 24, no. 5, pp. 1844–1854, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Li, S. Mouche, T. Sajic et al., “Deficiency in the NADPH oxidase 4 predisposes towards diet-induced obesity,” International Journal of Obesity, vol. 36, no. 1, pp. 1503–1513, 2012. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Fiaschi, F. Buricchi, G. Cozzi et al., “Redox-dependent and ligand-independent trans-activation of insulin receptor by globular adiponectin,” Hepatology, vol. 46, no. 1, pp. 130–139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. H. A. Woo, S. H. Yim, D. H. Shin, D. Kang, D.-Y. Yu, and S. G. Rhee, “Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling,” Cell, vol. 140, no. 4, pp. 517–528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Boura-Halfon and Y. Zick, “Phosphorylation of IRS proteins, insulin action, and insulin resistance,” American Journal of Physiology, vol. 296, no. 4, pp. E581–E591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Hirosumi, G. Tuncman, L. Chang et al., “A central, role for JNK in obesity and insulin resistance,” Nature, vol. 420, no. 6913, pp. 333–336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. F. Bost, M. Aouadi, L. Caron et al., “The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis,” Diabetes, vol. 54, no. 2, pp. 402–411, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. H. U. Sung, F. Frigerio, M. Watanabe et al., “Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity,” Nature, vol. 431, no. 7005, pp. 200–205, 2004, Erratum in Nature, vol. 431, no. 7007, p. 485, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Yuan, N. Konstantopoulos, J. Lee et al., “Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ,” Science, vol. 293, no. 5535, pp. 1673–1677, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. F. Xiao, Z. Huang, H. Li et al., “Leucine deprivation increases hepatic insulin sensitivity via GCN2/mTOR/S6K1 and AMPK pathways,” Diabetes, vol. 60, no. 3, pp. 746–756, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Jiang and J. L. Messina, “Role of inhibitory κB kinase and c-Jun NH2-terminal kinase in the development of hepatic insulin resistance in critical illness diabetes,” American Journal of Physiology, vol. 301, no. 3, pp. G454–G463, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Wang, M. Shi, H. Fu et al., “Mammalian target of the rapamycin pathway is involved in non-alcoholic fatty liver disease,” Molecular Medicine Reports, vol. 3, no. 6, pp. 909–915, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. L. Xi, C. Xiao, R. H. J. Bandsma, M. Naples, K. Adeli, and G. F. Lewis, “C-reactive protein impairs hepatic insulin sensitivity and insulin signaling in rats: role of mitogen-activated protein kinases,” Hepatology, vol. 53, no. 1, pp. 127–135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. M. C. Mumby and G. Walter, “Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth,” Physiological Reviews, vol. 73, no. 4, pp. 673–699, 1993. View at Google Scholar · View at Scopus
  99. C. T. Shearn, P. Reigan, and D. R. Petersen, “Inhibition of hydrogen peroxide signaling by 4-hydroxynonenal due to differential regulation of Akt1 and Akt2 contributes to decreases in cell survival and proliferation in hepatocellular carcinoma cells,” Free Radical Biology and Medicine, vol. 53, no. 1, pp. 1–11, 2012. View at Publisher · View at Google Scholar
  100. K. Hahn, M. Miranda, V. A. Francis, J. Vendrell, A. Zorzano, and A. A. Teleman, “PP2A regulatory subunit PP2A-B′ counteracts S6K phosphorylation,” Cell Metabolism, vol. 11, no. 5, pp. 438–444, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. N. Loukili, N. Rosenblatt-Velin, J. Rolli et al., “Oxidants positively or negatively regulate nuclear factor κB in a context-dependent manner,” Journal of Biological Chemistry, vol. 285, no. 21, pp. 15746–15752, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. A. A. Szypowska and B. M. T. Burgering, “The peroxide dilemma: opposing and mediating insulin action,” Antioxidants & Redox Signaling, vol. 15, no. 1, pp. 219–232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. J. F. Tanti and J. Jager, “Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation,” Current Opinion in Pharmacology, vol. 9, no. 6, pp. 753–762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Matsuzawa and H. Ichijo, “Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling,” Biochimica et Biophysica Acta, vol. 1780, no. 11, pp. 1325–1336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. D. Gao, S. Nong, X. Huang et al., “The effects of palmitate on hepatic insulin resistance are mediated by NADPH oxidase 3-derived reactive oxygen species through JNK and p38 MAPK pathways,” Journal of Biological Chemistry, vol. 285, no. 39, pp. 29965–29973, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. A. Corcoran and T. G. Cotter, “Redox regulation of protein kinases,” The FEBS Journal, vol. 280, no. 9, pp. 1944–1965, 2013. View at Publisher · View at Google Scholar
  107. N. Khan and H. Swartz, “Measurements in vivo of parameters pertinent to ROS/RNS using EPR spectroscopy,” Molecular and Cellular Biochemistry, vol. 234-235, no. 1, pp. 341–357, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Drougard, T. Duparc, X. Brenachot et al., “Hypothalamic apelin/reactive oxygen species signaling controls hepatic glucose metabolism in the onset of diabetes,” Antioxidants & Redox Signaling, vol. 20, no. 4, pp. 557–573, 2013. View at Publisher · View at Google Scholar
  109. Y. Y. Lu, T.-S. Chen, X.-P. Wang, and L. Li, “Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques,” Journal of Biomedical Optics, vol. 15, no. 4, Article ID 046028, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Valle, V. Catalán, A. Rodríguez et al., “Identification of liver proteins altered by type 2 diabetes mellitus in obese subjects,” Liver International, vol. 32, no. 6, pp. 951–961, 2012. View at Publisher · View at Google Scholar · View at Scopus
  111. A. D'alessandro, S. Rinalducci, and L. Zolla, “Redox proteomics and drug development,” Journal of Proteomics, vol. 74, no. 12, pp. 2575–2595, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. C. T. Shearn, K. S. Fritz, P. Reigan, and D. R. Petersen, “Modification of Akt2 by 4-hydroxynonenal inhibits insulin-dependent Akt signaling in HepG2 cells,” Biochemistry, vol. 50, no. 19, pp. 3984–3996, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. C. Lindemann and L. I. Leichert, “Quantitative redox proteomics: the NOxICAT method,” in Quantitative Methods in Proteomics, vol. 893 of Methods in Molecular Biology, pp. 387–403, 2012. View at Publisher · View at Google Scholar
  114. J. N. Baumgardner, K. Shankar, L. Hennings, E. Albano, T. M. Badger, and M. J. J. Ronis, “N-acetylcysteine attenuates progression of liver pathology in a rat model of nonalcoholic steatohepatitis,” The Journal of Nutrition, vol. 138, no. 10, pp. 1872–1879, 2008. View at Google Scholar · View at Scopus
  115. H. Chen, R. J. Karne, G. Hall et al., “High-dose oral vitamin C partially replenishes vitamin C levels in patients with type 2 diabetes and low vitamin C levels but does not improve endothelial dysfunction or insulin resistance,” American Journal of Physiology, vol. 290, no. 1, pp. H137–H145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Liu, I.-M. Lee, Y. Song et al., “Vitamin E and risk of type 2 diabetes in the women's health study randomized controlled trial,” Diabetes, vol. 55, no. 10, pp. 2856–2862, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. J. F. Dufour, C. M. Oneta, J.-J. Gonvers et al., “Randomized placebo-controlled trial of ursodeoxycholic acid with vitamin E in nonalcoholic steatohepatitis,” Clinical Gastroenterology and Hepatology, vol. 4, no. 12, pp. 1537–1543, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. J. R. Mercer, E. Yu, N. Figg et al., “The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/-/ApoE-/- mice,” Free Radical Biology and Medicine, vol. 52, no. 5, pp. 841–849, 2012. View at Publisher · View at Google Scholar · View at Scopus
  119. R. A. Smith and M. P. Murphy, “Animal and human studies with the mitochondria-targeted antioxidant MitoQ,” Annals of the New York Academy of Sciences, vol. 1201, pp. 96–103, 2010. View at Publisher · View at Google Scholar · View at Scopus