Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2011, Article ID 267208, 7 pages
Research Article

Thiolactosides: Scaffolds for the Synthesis of Glycolipids in Animal Cells

1Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo 173-0004, Japan
2Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

Received 10 November 2010; Accepted 7 January 2011

Academic Editor: Yuan Chuan Lee

Copyright © 2011 Masako Mori et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Various glycolipids were synthesized using thiolactosides as scaffolds for glycosylation in animal cells. The basic building blocks, n-dodecyl β-D-thiolactoside (β-LacSC12) and n-dodecyl α-D-thiolactoside (α-LacSC12), were chemically synthesized in 2 steps: glycosylation followed by deacylation. The thiolactosides were administered to animal cells in culture and served as substrates for cellular enzyme-catalyzed glycosylation. Incubation of mouse melanoma B16 cells in the presence of β-LacSC12 or α-LacSC12 resulted in sialylation of the terminal galactose residue and gave a GM3-type ganglioside. Administration of β-Lac SC12 in Madin-Darby canine kidney (MDCK) cells likewise gave a GM3-type ganglioside. On the other hand, introduction of β-LacSC12 in African green monkey kidney (Vero) cells gave Gb3- and Gb4-type glycolipids aside from GM3-type ganglioside. In the course of the study, significant changes in B16 cell morphology and elevated secretion of melanin were also observed.