Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2012, Article ID 197809, 10 pages
http://dx.doi.org/10.1155/2012/197809
Research Article

Factors Involved in the In Vitro Fermentability of Short Carbohydrates in Static Faecal Batch Cultures

1FrieslandCampina Research, FrieslandCampina, 7400 AB Deventer, The Netherlands
2Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, P.O. Box 226, Berkshire, Reading RG6 6AP, UK

Received 17 June 2012; Revised 13 November 2012; Accepted 13 November 2012

Academic Editor: R. J. Linhardt

Copyright © 2012 Eva Gietl et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. P. Burkitt, “Related disease—related cause?” The Lancet, vol. 2, no. 7632, pp. 1229–1231, 1969. View at Google Scholar · View at Scopus
  2. F. Levi, C. Pasche, C. La Vecchia, F. Lucchini, and S. Franceschi, “Food groups and colorectal cancer risk,” British Journal of Cancer, vol. 79, no. 7-8, pp. 1283–1287, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Scheppach, H. Sommer, T. Kirchner et al., “Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis,” Gastroenterology, vol. 103, no. 1, pp. 51–56, 1992. View at Google Scholar · View at Scopus
  4. B. F. Hinnebusch, S. Meng, J. T. Wu, S. Y. Archer, and R. A. Hodin, “The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation,” Journal of Nutrition, vol. 132, no. 5, pp. 1012–1017, 2002. View at Google Scholar · View at Scopus
  5. S. Tedelind, F. Westberg, M. Kjerrulf, and A. Vidal, “Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease,” World Journal of Gastroenterology, vol. 13, no. 20, pp. 2826–2832, 2007. View at Google Scholar · View at Scopus
  6. A. D. Blackwood, J. Salter, P. W. Dettmar, and M. F. Chaplin, “Dietary fibre, physicochemical properties and their relationship to health,” Journal of The Royal Society for the Promotion of Health, vol. 120, no. 4, pp. 242–247, 2000. View at Google Scholar · View at Scopus
  7. G. R. Gibson and M. B. Roberfroid, “Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics,” Journal of Nutrition, vol. 125, no. 6, pp. 1401–1412, 1995. View at Google Scholar · View at Scopus
  8. I. R. Rowland, C. J. Rumney, J. T. Coutts, and L. C. Lievense, “Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats,” Carcinogenesis, vol. 19, no. 2, pp. 281–285, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. B. L. Pool-Zobel, S. L. Abrahamse, and G. Rechkemmer, “Protective effects of short-chain fatty acids on early events of carcinogenesis: antigenotoxic effects of butyrate in rat and human colon cells,” in Proceedings of COST Action 92th Workshop on Dietary Fibre and Fermentation in the Colon, pp. 350–357, Espoo, Finland, 1996.
  10. H. K. Biesalski, P. Fürst, H. Kasper et al., Ernährungsmedizin. 2. Überarbeitete Auflage, Georg Thieme, Stuttgart, Germany, 1999.
  11. T. R. Licht, M. Hansen, M. Poulsen, and L. O. Dragsted, “Dietary carbohydrate source influences molecular fingerprints of the rat faecal microbiota,” BMC Microbiology, vol. 6, article 98, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. W. Wong, R. De Souza, C. W. C. Kendall, A. Emam, and D. J. A. Jenkins, “Colonic health: fermentation and short chain fatty acids,” Journal of Clinical Gastroenterology, vol. 40, no. 3, pp. 235–243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. G. A. Dienel and N. F. Cruz, “Astrocyte activation in working brain: energy supplied by minor substrates,” Neurochemistry International, vol. 48, no. 6-7, pp. 586–595, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. T. Wyss, B. Weber, V. Treyer et al., “Stimulation-induced increases of astrocytic oxidative metabolism in rats and humans investigated with 1-11C-acetate,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 1, pp. 44–56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. J. McBain and G. T. Macfarlane, “Modulation of genotoxic enzyme activities by non-digestible oligosaccharide metabolism in in-vitro human gut bacterial ecosystems,” Journal of Medical Microbiology, vol. 50, no. 9, pp. 833–842, 2001. View at Google Scholar · View at Scopus
  16. G. Tzortzis, A. K. Goulas, J. M. Gee, and G. R. Gibson, “A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo,” Journal of Nutrition, vol. 135, no. 7, pp. 1726–1731, 2005. View at Google Scholar · View at Scopus
  17. G. T. Macfarlane, G. R. Gibson, and J. H. Cummings, “Comparison of fermentation reactions in different regions of the human colon,” Journal of Applied Bacteriology, vol. 72, no. 1, pp. 57–64, 1992. View at Google Scholar · View at Scopus
  18. G. T. Macfarlane and A. J. McBain, “The human colonic microbiota,” in Colonic Microbiota, Nutrition and Health, G. R. Gibson MB Roberfroid, Ed., pp. 1–25, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999. View at Google Scholar
  19. M. H. M. C. Van Nuenen, K. Venema, J. C. J. Van Der Woude, and E. J. Kuipers, “The metabolic activity of fecal microbiota from healthy individuals and patients with inflammatory bowel disease,” Digestive Diseases and Sciences, vol. 49, no. 3, pp. 485–491, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. McIntyre, G. P. Young, T. Taranto, P. R. Gibson, and P. B. Ward, “Different fibers have different regional effects on luminal contents of rat colon,” Gastroenterology, vol. 101, no. 5, pp. 1274–1281, 1991. View at Google Scholar · View at Scopus
  21. E. Olano-Martin, K. C. Mountzouris, G. R. Gibson, and R. A. Rastall, “In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria,” British Journal of Nutrition, vol. 83, no. 3, pp. 247–255, 2000. View at Google Scholar · View at Scopus
  22. E. Olano-Martin, G. R. Gibson, and R. A. Rastall, “Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides,” Journal of Applied Microbiology, vol. 93, no. 3, pp. 505–511, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Perrin, C. Fougnies, J. P. Grill, H. Jacobs, and F. Schneider, “Fermentation of chicory fructo-oligosaccharides in mixtures of different degrees of polymerization by three strains of bifidobacteria,” Canadian Journal of Microbiology, vol. 48, no. 8, pp. 759–763, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. K. M. J. Van Laere, M. Bosveld, H. A. Schols et al., “Fermentative degradation of plant cell wall derived oligosaccharides by intestinal bacteria,” in Proceedings of the International Symposium on “Non-Digestible Oligosaccharides: Healthy Food for the Colon”, R. Hartemink, Ed., pp. 37–46, Wageningen Graduate School VLAG, 1997.
  25. H. Ruppin, S. Bar-Meir, and K. H. Soergel, “Absorption of short-chain fatty acids by the colon,” Gastroenterology, vol. 78, no. 6, pp. 1500–1507, 1980. View at Google Scholar · View at Scopus
  26. J. A. Vogt and T. M. S. Wolever, “Fecal acetate is inversely related to acetate absorption from the human rectum and distal colon,” Journal of Nutrition, vol. 133, no. 10, pp. 3145–3148, 2003. View at Google Scholar · View at Scopus
  27. G. O. Guerrant, M. A. Lambert, and C. W. Moss, “Analysis of short-chain acids from anaerobic bacteria by high-performance liquid chromatography,” Journal of Clinical Microbiology, vol. 16, no. 2, pp. 355–360, 1982. View at Google Scholar · View at Scopus
  28. J. L. Campbell, C. V. Williams, and J. H. Eisemann, “Fecal inoculum can be used to determine the rate and extent of in vitro fermentation of dietary fiber sources across three lemur species that differ in dietary profile: varecia variegata, Eulemur fulvus and Hapalemur griseus,” Journal of Nutrition, vol. 132, no. 10, pp. 3073–3080, 2002. View at Google Scholar · View at Scopus
  29. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society B, vol. 57, pp. 289–300, 1995. View at Google Scholar
  30. E. Bauer, B. A. Williams, C. Voigt, R. Mosenthin, and M. W. A. Verstegen, “Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates,” Animal Science, vol. 73, no. 2, pp. 313–322, 2001. View at Google Scholar · View at Scopus
  31. M. R. Smiricky-Tjardes, E. A. Flickinger, C. M. Grieshop, L. L. Bauer, M. R. Murphy, and G. C. Fahey, “In vitro fermentation characteristics of selected oligosaccharides by swine fecal microflora,” Journal of Animal Science, vol. 81, no. 10, pp. 2505–2514, 2003. View at Google Scholar · View at Scopus
  32. A. J. Vince, N. I. McNeil, J. D. Wager, and O. M. Wrong, “The effect of lactulose, pectin, arabinogalactan and cellulose on the production of organic acids and metabolism of ammonia by intestinal bacteria in a faecal incubation system,” British Journal of Nutrition, vol. 63, no. 1, pp. 17–26, 1990. View at Google Scholar · View at Scopus
  33. P. J. Wood, E. Arrigoni, S. Shea Miller, and R. Amadò, “Fermentability of oat and wheat fractions enriched in β-glucan using human fecal inoculation,” Cereal Chemistry, vol. 79, no. 3, pp. 445–454, 2002. View at Google Scholar · View at Scopus
  34. N. Peekhaus and T. Conway, “What's for dinner?: entner-Doudoroff metabolism in Escherichia coli,” Journal of Bacteriology, vol. 180, no. 14, pp. 3495–3502, 1998. View at Google Scholar · View at Scopus
  35. T. L. Miller and M. J. Wolin, “Fermentations by saccharolytic intestinal bacteria,” American Journal of Clinical Nutrition, vol. 32, no. 1, pp. 164–172, 1979. View at Google Scholar · View at Scopus
  36. G. T. Macfarlane and G. R. Gibson, “Carbohydrate fermentation, energy transduction and gas metabolism in the human large intestine,” in Gastrointestinal Microbiology, R. I. Mackie and B. A. White, Eds., vol. 1, pp. 269–318, Chapman & Hall, New York, NY, USA, 1997. View at Google Scholar
  37. P. B. Mortensen, K. Holtug, and H. S. Rasmussen, “Short-chain fatty acid production from mono- and disaccharides in a fecal incubation system: Implications for colonic fermentation of dietary fiber in humans,” Journal of Nutrition, vol. 118, no. 3, pp. 321–325, 1988. View at Google Scholar · View at Scopus
  38. H. Hove, I. Nordgaard-Andersen, and P. B. Mortensen, “Effect of lactic acid bacteria on the intestinal production of lactate and short-chain fatty acids, and the absorption of lactose,” American Journal of Clinical Nutrition, vol. 59, no. 1, pp. 74–79, 1994. View at Google Scholar · View at Scopus
  39. S. A. Brooks, M. V. Dwek, and U. Schumacher, Functional and Molecular Glycobiology, BIOS Scientific, Oxford, UK, 2002.
  40. F. Depeint, G. Tzortzis, J. Vulevic, K. I'Anson, and G. R. Gibson, “Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study,” American Journal of Clinical Nutrition, vol. 87, no. 3, pp. 785–791, 2008. View at Google Scholar · View at Scopus
  41. A. Bernalier, J. Dore, and M. Durand, “Biochemistry of fermentation,” in Colonic Microbiota, Nutrition and Health, G. R. Gibson and M. B. Roberfroid, Eds., pp. 37–53, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999. View at Google Scholar
  42. V. Van Craeyveld, K. Swennen, E. Dornez et al., “Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats,” Journal of Nutrition, vol. 138, no. 12, pp. 2348–2355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. M. L. Sanz, G. R. Gibson, and R. A. Rastall, “Influence of disaccharide structure on prebiotic selectivity in vitro,” Journal of Agricultural and Food Chemistry, vol. 53, no. 13, pp. 5192–5199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Brobech Mortensen and I. Nordgaard-Andersen, “The dependence of the in vitro fermentation of dietary fibre to short-chain fatty acids on the contents of soluble non-starch polysaccharides,” Scandinavian Journal of Gastroenterology, vol. 28, no. 5, pp. 418–422, 1993. View at Google Scholar · View at Scopus
  45. M. L. Sanz, G. L. Côté, G. R. Gibson, and R. A. Rastall, “Prebiotic properties of alternansucrase maltose-acceptor oligosaccharides,” Journal of Agricultural and Food Chemistry, vol. 53, no. 15, pp. 5911–5916, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. M. L. Sanz, G. L. Côté, G. R. Gibson, and R. A. Rastall, “Selective fermentation of gentiobiose-derived oligosaccharides by human gut bacteria and influence of molecular weight,” FEMS Microbiology Ecology, vol. 56, no. 3, pp. 383–388, 2006. View at Publisher · View at Google Scholar · View at Scopus