Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2012, Article ID 209085, 7 pages
http://dx.doi.org/10.1155/2012/209085
Research Article

Synthesis and Characterization of Graft Copolymer of Dextran and 2-Acrylamido-2-methylpropane Sulphonic Acid

Department of Chemistry, Banaras Hindu University, Varanasi 221005, India

Received 21 May 2012; Accepted 24 July 2012

Academic Editor: R. J. Linhardt

Copyright © 2012 Venkanna Azmeera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Nouvel, P. Dubois, E. Dellacherie, and J.-L. Six, “Controlled synthesis of amphiphilic biodegradable polylactide-grafted dextran copolymers,” Journal of Polymer Science A, vol. 42, no. 11, pp. 2577–2588, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Ouchi, T. Kontani, and Y. Ohya, “Mechanical property and biodegradability of solution-cast films prepared from amphiphilic polylactide-grafted dextran,” Journal of Polymer Science A, vol. 41, no. 16, pp. 2462–2468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Ouchi, T. Kontani, R. Aoki, T. Saito, and Y. Ohya, “Characteristic properties of film prepared from poly(L-lactide)-grafted dextran of a relatively high sugar unit content as a degradable biomaterial,” Journal of Polymer Science A, vol. 44, no. 21, pp. 6402–6409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Uraz and A. Güner, “Comparison of molecular association of dextran and periodate-oxidized dextran in aqueous solutions,” Carbohydrate Polymers, vol. 34, no. 3, pp. 127–130, 1997. View at Google Scholar · View at Scopus
  5. H. Wondraczek, T. Elschner, and T. Heinze, “Synthesis of highly functionalized dextran alkyl carbonates showing nanosphere formation,” Carbohydrate Polymers, vol. 83, no. 3, pp. 1112–1118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. P. Bajgai, D. C. Parajuli, J. A. Ko, H. K. Kang, M.-S. Khil, and H. Y. Kim, “Synthesis, characterization and aqueous dispersion of dextran-g-poly(1,4-dioxan-2-one) copolymers,” Carbohydrate Polymers, vol. 78, no. 4, pp. 833–840, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Krishnamoorthi, D. Mal, and R. P. Singh, “Characterization of graft copolymer based on polyacrylamide and dextran,” Carbohydrate Polymers, vol. 69, no. 2, pp. 371–377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. B. G. De Geest, W. Van Camp, F. E. Du Prez, S. C. De Smedt, J. Demeester, and W. E. Hennink, “Biodegradable microcapsules designed via ‘click’ chemistry,” Chemical Communications, no. 2, pp. 190–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Pahimanolis, A.-H. Vesterinen, J. Rich, and J. Seppala, “Modification of dextran using click-chemistry approach in aqueous media,” Carbohydrate Polymers, vol. 82, no. 1, pp. 78–82, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Tang, H. Dou, and K. Sun, “One-step synthesis of dextran-based stable nanoparticles assisted by self-assembly,” Polymer, vol. 47, no. 2, pp. 728–734, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Y. Cheung, Y. Ying, A. M. Rauth, N. Marcon, and X. Y. Wu, “Biodegradable dextran-based microspheres for delivery of anticancer drug mitomycin C,” Biomaterials, vol. 26, no. 26, pp. 5375–5385, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. P. Rokhade, S. A. Patil, and T. M. Aminabhavi, “Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir,” Carbohydrate Polymers, vol. 67, no. 4, pp. 605–613, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Raynaud, B. Choquenet, E. Marie et al., “Emulsifying properties of biodegradable polylactide-grafted dextran copolymers,” Biomacromolecules, vol. 9, no. 3, pp. 1014–1021, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Krishnamoorthi, D. Mai, and R. P. Singh, “Characterization and solution properties of a partially hydrolyzed graft copolymer of polyacrylamide and dextran,” Journal of Applied Polymer Science, vol. 110, no. 3, pp. 1297–1303, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Krishnamoorthi, P. Adhikary, D. Mal, and R. P. Singh, “Novel polymeric flocculants based on polyacrylamide grafted dextran in kaolin suspension,” Journal of Applied Polymer Science, vol. 118, no. 6, pp. 3539–3544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Adhikary, K. N. Tiwari, and R. P. Singh, “Synthesis, characterization, and flocculation characteristics of polyacrylamide-grafted glycogen,” Journal of Applied Polymer Science, vol. 103, no. 2, pp. 773–778, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. H. Gad, “Preparation and characterization of poly(2-acrylamido-2-methylpropane- sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment,” Radiation Physics and Chemistry, vol. 77, no. 9, pp. 1101–1107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Zhang and A. J. Easteal, “Study of free-radical copolymerization of N-isopropylacrylamide with 2-acrylamido-2-methyl-1-propanesulphonic acid,” Journal of Applied Polymer Science, vol. 88, no. 11, pp. 2563–2569, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. S. J. De Jong, S. C. De Smedt, M. W. C. Wahls, J. Demeester, J. J. Kettenes-van den Bosch, and W. E. Hennink, “Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran,” Macromolecules, vol. 33, no. 10, pp. 3680–3686, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Perrino, S. Lee, S. W. Choi, A. Maruyama, and N. D. Spencer, “A biomimetic alternative to poly(ethylene glycol) as an antifouling coating: resistance to nonspecific protein adsorption of poly(L-lysine)-graft- dextran,” Langmuir, vol. 24, no. 16, pp. 8850–8856, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Bao, J. Ma, and N. Li, “Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel,” Carbohydrate Polymers, vol. 84, no. 1, pp. 76–82, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. P. Goodwin, S. M. Tabakman, K. Welsher, S. P. Sherlock, G. Prencipe, and H. Dai, “Phospholipid-dextran with a single coupling point: a useful amphiphile for functionalization of nanomaterials,” Journal of the American Chemical Society, vol. 131, no. 1, pp. 289–296, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Richard, A. Barras, A. B. Younes, N. Monfilliette-Dupont, and P. Melnyk, “Minimal chemical modification of reductive end of dextran to produce an amphiphilic polysaccharide able to incorporate onto lipid nanocapsules,” Bioconjugate Chemistry, vol. 19, no. 7, pp. 1491–1495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Maia, R. A. Carvalho, J. F. J. Coelho, P. N. Simões, and M. H. Gil, “Insight on the periodate oxidation of dextran and its structural vicissitudes,” Polymer, vol. 52, no. 2, pp. 258–265, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Fathi, N. Atyabi, M. Imani, and Z. Alinejad, “Physically crosslinked polyvinyl alcohol-dextran blend xerogels: morphology and thermal behavior,” Carbohydrate Polymers, vol. 84, no. 1, pp. 145–152, 2011. View at Publisher · View at Google Scholar · View at Scopus