Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2012, Article ID 840591, 6 pages
http://dx.doi.org/10.1155/2012/840591
Research Article

Preparation and Characterization of Chitosan/Zinc Oxide Nanoparticles for Imparting Antimicrobial and UV Protection to Cotton Fabric

Textile Research Division, National Research Centre, Dokki, Egypt

Received 27 December 2011; Revised 30 January 2012; Accepted 6 February 2012

Academic Editor: R. J. Linhardt

Copyright © 2012 M. M. AbdElhady. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Sevda and S. J. McClure, “Potential applications of chitosan in veterinary medicine,” Advanced Drug Delivery Reviews, vol. 56, no. 10, pp. 1467–1480, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. A. Agnihotri, N. N. Mallikarjuna, and T. M. Aminabhavi, “Recent advances on chitosan-based micro- and nanoparticles in drug delivery,” Journal of Controlled Release, vol. 100, no. 1, pp. 5–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. K. Kim and N. Rajapakse, “Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review,” Carbohydrate Polymers, vol. 62, no. 4, pp. 357–368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. N. B. Hubbard, M. L. Culpepper, and L. L. Howell, “Actuators for micropositioners and nanopositioners,” Applied Mechanics Reviews, vol. 59, no. 1–6, pp. 324–334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. H. J. Lee, S. Y. Yeo, and S. H. Jeong, “Antibacterial effect of nanosized silver colloidal solution on textile fabrics,” Journal of Materials Science, vol. 38, no. 10, pp. 2199–2204, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Wang and M. Muhammed, “Synthesis of zinc oxide nanoparticles with controlled morphology,” Journal of Materials Chemistry, vol. 9, no. 11, pp. 2871–2878, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Y. Xu, H. Wang, Y. C. Zhang et al., “Hydrothermal synthesis of zinc oxide powders with controllable morphology,” Ceramics International, vol. 30, no. 1, pp. 93–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Tani, L. Mdler, and S. E. Pratsinis, “Homogeneous ZnO nanoparticles by flame spray pyrolysis,” Journal of Nanoparticle Research, vol. 4, no. 4, pp. 337–343, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. L. H. Li, J. C. Deng, H. R. Deng, Z. L. Liu, and L. Xin, “Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes,” Carbohydrate Research, vol. 345, no. 8, pp. 994–998, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Reinert, F. Fuso, R. Hilfiker, and E. Schmidt, “UV-protecting properties of textile fabrics and their improvement,” Textile Chemist and Colorist, vol. 29, no. 12, pp. 36–43, 1997. View at Google Scholar · View at Scopus
  11. H. Yang, S. Zhu, and N. Pan, “Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme,” Journal of Applied Polymer Science, vol. 92, no. 5, pp. 3201–3210, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Ohno, K. Sarukawa, K. Tokieda, and M. Matsumura, “Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases,” Journal of Catalysis, vol. 203, no. 1, pp. 82–86, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. R. A. A. Muzzarelli and L. Sipos, “Chitosan for the collection from seawater of naturally occurring zinc, cadmium, lead and copper,” Talanta, vol. 18, no. 9, pp. 853–858, 1971. View at Google Scholar · View at Scopus
  14. R. A. A. Muzzarelli and O. Tubertini, “Chitin and chitosan as chromatographic supports and adsorbents for collection of metal ions from organic and aqueous solutions and sea-water,” Talanta, vol. 16, no. 12, pp. 1571–1577, 1969. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Higazy, M. Hashem, A. ElShafei, N. Shaker, and M. M. Abdel Hady, “Development of antimicrobial jute packaging using chitosan and chitosan-metal complex,” Carbohydrate Polymers, vol. 79, no. 4, pp. 867–874, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Guo, P. Diao, and S. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: dependence of morphology and alignment ordering upon preparing conditions,” Journal of Solid State Chemistry, vol. 178, no. 6, pp. 1864–1873, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Salehi, M. Arami, N. M. Mahmoodi, H. Bahrami, and S. Khorramfar, “Novel biocompatible composite (Chitosan-zinc oxide nanoparticle): preparation, characterization and dye adsorption properties,” Colloids and Surfaces B, vol. 80, no. 1, pp. 86–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Bhadra, M. K. Mitra, G. C. Das, R. Dey, and S. Mukherjee, “Interaction of chitosan capped ZnO nanorods with Escherichia coli,” Materials Science and Engineering C, vol. 31, no. 5, pp. 929–937, 2011. View at Publisher · View at Google Scholar
  19. I. M. Helander, E.-L. Nurmiaho-Lassila, R. Ahvenainen, J. Rhoades, and S. Roller, “Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria,” International Journal of Food Microbiology, vol. 71, no. 2-3, pp. 235–244, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Halliwell and J. M. C. Gutteridge, “Oxygen toxicity, oxygen radicals, transition metals and disease,” Biochemical Journal, vol. 219, no. 1, pp. 1–14, 1984. View at Google Scholar · View at Scopus
  21. S. Kathirvelu, D. Souzaa, and B. Dhurai, “UV protection finishing of textiles using ZnO nanoparticals,” Indian Journal of Fiber and Textile Research, vol. 34, no. 3, pp. 267–273, 2009. View at Google Scholar