Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2013, Article ID 537202, 7 pages
http://dx.doi.org/10.1155/2013/537202
Research Article

Analysis by Vibrational Spectroscopy of Seaweed Polysaccharides with Potential Use in Food, Pharmaceutical, and Cosmetic Industries

1IMAR-CMA, Department of Life Sciences, FCTUC, University of Coimbra, 3004-516 Coimbra, Portugal
2Phycology Lab., Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
3Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal

Received 14 November 2012; Accepted 8 February 2013

Academic Editor: Otto Holst

Copyright © 2013 Leonel Pereira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Pereira, “A Review of the nutrient composition of selected edible seaweeds,” in Seaweed: Ecology, Nutrient Composition and Medicinal Uses, V. H. Pomin, Ed., pp. 15–47, Nova Science, New York, NY, USA, 2011. View at Google Scholar
  2. G. Jiao, G. Yu, J. Zhang, and H. S. Ewart, “Chemical structures and bioactivities of sulfated polysaccharides from marine algae,” Marine Drugs, vol. 9, no. 2, pp. 196–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Rudolph, “Seaweed products: red algae of economic significance,” in Marine & Freshwater Products Handbook, R. E. Martin, Ed., pp. 515–529, Technomic, Lancaster, UK, 2000. View at Google Scholar
  4. L. Pereira and F. van de Velde, “Portuguese carrageenophytes: carrageenan composition and geographic distribution of eight species (Gigartinales, Rhodophyta),” Carbohydrate Polymers, vol. 84, no. 1, pp. 614–623, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Pereira, A. M. Amado, A. T. Critchley, F. van de Velde, and P. J. A. Ribeiro-Claro, “Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman),” Food Hydrocolloids, vol. 23, no. 7, pp. 1903–1909, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. L.-E. Rioux, S. L. Turgeon, and M. Beaulieu, “Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris,” Phytochemistry, vol. 71, no. 13, pp. 1586–1595, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Barry, “Constitution of laminarin—isolation of 2, 4, 6-trimethylglucopyranose,” Scientific Proceedings of Royal Dublin Society, no. 22, pp. 59–67, 1939. View at Google Scholar
  8. S. Peat, W. J. Whelan, and H. G. Lawley, “The structure of laminarin. Part I. The main polymeric linkage,” Journal of the Chemical Society, pp. 724–728, 1958. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Chopin, B. F. Kerin, and R. Mazerolle, “Phycocolloid chemistry as a taxonomic indicator of phylogeny in the Gigartinales, Rhodophyceae: a review and current developments using Fourier transform infrared diffuse reflectance spectroscopy,” Phycological Research, vol. 47, no. 3, pp. 167–188, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. H. J. Bixler and H. Porse, “A decade of change in the seaweed hydrocolloids industry,” Journal of Applied Phycology, vol. 23, no. 3, pp. 321–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. F. van de Velde and G. A. de Ruiter, “Carrageenan,” in Biopolymers V. 6. Polysaccharides II, Polysaccharides from Eukaryotes, E. J. Vandamme, S. D. Baets, and A. Steinbèuchel, Eds., pp. 245–274, Wiley-VCH, Chichester, UK, 2002. View at Google Scholar
  12. M. Lahaye, “Developments on gelling algal galactans, their structure and physico-chemistry,” Journal of Applied Phycology, vol. 13, no. 2, pp. 173–184, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. C. S. Lobban, D. J. Chapman, and B. P. Kremer, Experimental Phycology: A Laboratory Manual, Phycological Society of America, Cambridge University Press, 1988.
  14. M. Lahaye, “Chemistry and physico-chemistry of phycocolloids,” Cahiers de Biologie Marine, vol. 42, no. 1-2, pp. 137–157, 2001. View at Google Scholar · View at Scopus
  15. M. Rinaudo, “Alginates and carrageenans,” Actualite Chimique, no. 11-12, pp. 35–38, 2002. View at Google Scholar · View at Scopus
  16. L. Pereira, Estudos em macroalgas carragenófitas (Gigartinales, Rhodophyceae) da costa portuguesa—aspectos ecológicos, bioquímicos e citológicos [Ph.D. thesis], FCTUC, University of Coimbra, 2004.
  17. C. Sartori, D. S. Finch, B. Ralph, and K. Gilding, “Determination of the cation content of alginate thin films by FTi.r. Spectroscopy,” Polymer, vol. 38, no. 1, pp. 43–51, 1997. View at Google Scholar · View at Scopus
  18. H. Kylin, “Biochemistry of sea algae,” Zeitschrift für Physikalische Chemie, vol. 83, pp. 171–197, 1913. View at Google Scholar
  19. L. Chevolot, B. Mulloy, J. Ratiskol, A. Foucault, and S. Colliec-Jouault, “A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae,” Carbohydrate Research, vol. 330, no. 4, pp. 529–535, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. A. O. Chizhov, A. Dell, H. R. Morris et al., “Structural analysis of laminarans by MALDI and FAB mass spectrometry,” Carbohydrate Research, vol. 310, no. 3, pp. 203–210, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. T. E. Nelson and B. A. Lewis, “Separation and characterization of the soluble and insoluble components of insoluble laminaran,” Carbohydrate Research, vol. 33, no. 1, pp. 63–74, 1974. View at Google Scholar · View at Scopus
  22. M. Zinoun and J. Cosson, “Seasonal variation in growth and carrageenan content of Calliblepharis jubata (Rhodophyceae, Gigartinales) from the Normandy coast, France,” Journal of Applied Phycology, vol. 8, no. 1, pp. 29–34, 1996. View at Google Scholar · View at Scopus
  23. L. Pereira, A. Sousa, H. Coelho, A. M. Amado, and P. J. A. Ribeiro-Claro, “Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification of some seaweed phycocolloids,” Biomolecular Engineering, vol. 20, no. 4–6, pp. 223–228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Matsuhiro, “Vibrational spectroscopy of seaweed galactans,” Hydrobiologia, vol. 326-327, pp. 481–489, 1996. View at Google Scholar · View at Scopus
  25. W. Mackie, “Semi-quantitative estimation of the composition of alginates by infra-red spectroscopy,” Carbohydrate Research, vol. 20, no. 2, pp. 413–415, 1971. View at Google Scholar · View at Scopus
  26. E. Gómez-Ordóñez and P. Rupérez, “FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds,” Food Hydrocolloids, vol. 25, no. 6, pp. 1514–1520, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Sekkal, P. Legrand, J. P. Huvenne, and M. C. Verdus, “The use of FTIR microspectrometry as a new tool for the identification in situ of polygalactanes in red seaweeds,” Journal of Molecular Structure, vol. 294, pp. 227–230, 1993. View at Google Scholar · View at Scopus
  28. A. I. Usov and M. Y. Elashvili, “Polysaccharides of algae. 44. Investigation of sulfated galactan from Laurencia nipponica Yamada (Rhodophyta, Rhodomelaceae) using partial reductive hydrolysis,” Botanica Marina, no. 34, pp. 553–560, 1991. View at Google Scholar
  29. N. P. Chandia, B. Matsuhiro, and A. E. Vasquez, “Alginic acids in Lessonia trabeculata: characterization by formic acid hydrolysis and FT-IR spectroscopy,” Carbohydrate Polymers, vol. 46, no. 1, pp. 81–87, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. N. P. Chandía, B. Matsuhiro, E. Mejías, and A. Moenne, “Alginic acids in Lessonia vadosa: partial hydrolysis and elicitor properties of the polymannuronic acid fraction,” Journal of Applied Phycology, vol. 16, no. 2, pp. 127–133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. P. Filippov and R. Kohn, “Determination of composition of alginates by infra-red spectroscopic methods,” Chemické Zvesti, no. 28, p. 817, 1974. View at Google Scholar
  32. K. Sakugawa, A. Ikeda, A. Takemura, and H. Ono, “Simplified method for estimation of composition of alginates by FTIR,” Journal of Applied Polymer Science, vol. 93, no. 3, pp. 1372–1377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Skriptsova, V. Khomenko, and I. Isakov, “Seasonal changes in growth rate, morphology and alginate content in Undaria pinnatifida at the northern limit in the Sea of Japan (Russia),” Journal of Applied Phycology, vol. 16, no. 1, pp. 17–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. R. Torres, A. P. A. Sousa, E. A. T. Silva Filho et al., “Extraction and physicochemical characterization of Sargassum vulgare alginate from Brazil,” Carbohydrate Research, vol. 342, no. 14, pp. 2067–2074, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Sahayaraj, S. Rajesh, and J. M. Rathi, “Silver nanoparticles biosynthesis using marine alga Padina pavonica (Linn.) and its microbicidal activity,” Digest Journal of Nanomaterials and Biostructures, no. 7, pp. 1557–1567, 2012. View at Google Scholar
  36. N. P. Chandía and B. Matsuhiro, “Characterization of a fucoidan from Lessonia vadosa (Phaeophyta) and its anticoagulant and elicitor properties,” International Journal of Biological Macromolecules, vol. 42, no. 3, pp. 235–240, 2008. View at Publisher · View at Google Scholar · View at Scopus