Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2013 (2013), Article ID 856142, 9 pages
http://dx.doi.org/10.1155/2013/856142
Research Article

Effect of Molecular Sizes of Chondroitin Sulfate on Interaction with L-Selectin

1Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan
2National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan

Received 11 March 2013; Accepted 13 April 2013

Academic Editor: R. J. Linhardt

Copyright © 2013 Naoko Igarashi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Roden, “Structure and metabolism of connective tissue proteoglycans,” in The Biochemistry of Glycoproteins and Proteoglycans, pp. 267–371, Plenum Press, New York, NY, USA, 1980. View at Google Scholar
  2. K. Kimata, M. Okayama, A. Oohira, and S. Suzuki, “Cytodifferentiation and proteoglycan biosynthesis,” Molecular and Cellular Biochemistry, vol. 1, no. 2, pp. 211–228, 1973. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Toida, H. Toyoda, and T. Imanari, “High-resolution proton nuclear magnetic resonance studies on chondroitin sulfates,” Analytical Sciences, vol. 9, pp. 53–58, 1993. View at Google Scholar
  4. J. E. Scott, “Structure and function in extracellular matrices depend on interactions between anionic glycosaminoglycans,” Pathologie Biologie, vol. 49, no. 4, pp. 284–289, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Sugahara, T. Mikami, T. Uyama, S. Mizuguchi, K. Nomura, and H. Kitagawa, “Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate,” Current Opinion in Structural Biology, vol. 13, no. 5, pp. 612–620, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Salustri, A. Camaioni, M. di Giacomo, C. Fulop, and V. C. Hascall, “Hyaluronan and proteoglycans in ovarian follicles,” Human Reproduction Update, vol. 5, no. 4, pp. 293–301, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Yoneda, S. Shimizu, Y. Nishi, M. Yamagata, S. Suzuki, and K. Kimata, “Hyaluronic acid-dependent change in the extracellular matrix of mouse dermal fibroblasts that is conducive to cell proliferation,” Journal of Cell Science, vol. 90, no. 2, pp. 275–286, 1988. View at Google Scholar · View at Scopus
  8. G. S. Kelly, “The role of glucosamine sulfate and chondroitin sulfates in the treatment of degenerative joint disease,” Alternative Medicine Review, vol. 3, no. 1, pp. 27–39, 1998. View at Google Scholar · View at Scopus
  9. T. Omata, Y. Segawa, Y. Itokazu, N. Inoue, and Y. Tanaka, “Effects of chondroitin sulfate-C on bradykinin-induced proteoglycan depletion in rats,” Arzneimittel-Forschung/Drug Research, vol. 49, no. 7, pp. 577–581, 1999. View at Google Scholar · View at Scopus
  10. J. Beren, S. L. Hill, M. Diener-West, and N. R. Rose, “Effect of pre-loading oral glucosamine HCI/chondroitin sulfate/manganese ascorbate combination on expierimental arthritis in rats,” Proceedings of the Society for Experimental Biology and Medicine, vol. 226, no. 2, pp. 144–151, 2001. View at Google Scholar · View at Scopus
  11. G. Rovetta, “Galactosaminoglycuronoglycan sulfate (Matrix) in therapy of tibiofibular osteoarthritis of the knee,” Drugs under Experimental and Clinical Research, vol. 17, no. 1, pp. 53–57, 1991. View at Google Scholar · View at Scopus
  12. S. Sakai, H. Akiyama, N. Harikai et al., “Effect of chondroitin sulfate on murine splenocytes sensitized with ovalbumin,” Immunology Letters, vol. 84, no. 3, pp. 211–216, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Akiyama, S. Sakai, R. J. Linhardt, Y. Goda, T. Toida, and T. Maitani, “Chondroitin sulphate structure affects its immunological activities on murine splenocytes sensitized with ovalbumin,” Biochemical Journal, vol. 382, no. 1, pp. 269–278, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Haylock-Jacobs, M.B. Keough, L. Lau, and V. W. Yon, “Chondroitin sulphate proteoglycans: extracellular matrix proteins that regulate immunity of the central nervous system,” Autoimmunity Reviews, vol. 10, no. 12, pp. 766–772, 2011. View at Google Scholar
  15. H. Kawashima, Y. F. Li, N. Watanabe, J. Hirose, M. Hirose, and M. Miyasaka, “Identification and characterization of ligands for L-selectin in the kidney. I. Versican, a large chondroitin sulfate proteoglycan, is a ligand for L-selectin,” International Immunology, vol. 11, no. 3, pp. 393–405, 1999. View at Google Scholar · View at Scopus
  16. H. Kawashima, M. Hirose, J. Hirose, D. Nagakubo, A. H. K. Plaas, and M. Miyasaka, “Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44,” Journal of Biological Chemistry, vol. 275, no. 45, pp. 35448–35456, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Kawashima, K. Atarashi, M. Hirose et al., “Oversulfated chondroitin/dermatan sulfates containing GlcAβ1/IdoAα1-3GalNAc(4,6-O-disulfate) interact with L- and P-selectin and chemokines,” Journal of Biological Chemistry, vol. 277, no. 15, pp. 12921–12930, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Hirose, H. Kawashima, O. Yoshie, K. Tashiro, and M. Miyasaka, “Versican interacts with chemokines and modulates cellular responses,” Journal of Biological Chemistry, vol. 276, no. 7, pp. 5228–5234, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. A. K. Abbas, K. M. Murphy, and A. Sher, “Functional diversity of helper T lymphocytes,” Nature, vol. 383, no. 6603, pp. 787–793, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. K. M. Murphy and S. L. Reiner, “The lineage decisions of helper T cells,” Nature Reviews Immunology, vol. 2, no. 12, pp. 933–944, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Toida, K. Sato, N. Sakamoto, S. Sakai, S. Hosoyama, and R. J. Linhardt, “Solvolytic depolymerization of chondroitin and dermatan sulfates,” Carbohydrate Research, vol. 344, no. 7, pp. 888–893, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Toyoda, K. Shinomiya, S. Yamanashi, I. Koshiishi, and T. Imanari, “Microdetermination of unsaturated disaccharide’s produced from chondroitinsulfates in rabbit plasma by high-performance liquid chromatography with fluorometric detection,” Analytical Sciences, vol. 4, pp. 381–384, 1988. View at Google Scholar
  23. H. Toyoda, K. Motoki, M. Tanikawa, K. Shinomiya, H. Akiyama, and T. Imanari, “Determination of human urinary hyaluronic acid, chondroitin sulphate and dermatan sulphate as their unsaturated disaccharides by high-performance liquid chromatography,” Journal of Chromatography, vol. 565, no. 1-2, pp. 141–148, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. J. A. Santos, B. Mulloy, and P. A. S. Mourao, “Structural diversity among sulfated α-L-galactans from ascidians (tunicates)—studies on the species Ciona intestinalis and Herdmania monus,” The European Journal of Biochemistry, vol. 204, no. 2, pp. 669–677, 1992. View at Google Scholar · View at Scopus
  25. A. P. Alves, B. Mulloy, J. A. Diniz, and P. A. S. Mourão, “Sulfated polysaccharides from the egg jelly layer are species-specific inducers of acrosomal reaction in sperms of sea urchins,” Journal of Biological Chemistry, vol. 272, no. 11, pp. 6965–6971, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. W. R. L. Farias, A. P. Valente, M. S. Pereira, and P. A. S. Mourão, “Structure and anticoagulant activity of sulfated galactans. Isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates,” Journal of Biological Chemistry, vol. 275, no. 38, pp. 29299–29307, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. M. Michelacci and C. P. Dietrich, “Structure of chondroitin sulphate from whale cartilage: distribution of 6- and 4-sulphated oligosaccharides in the polymer chains,” International Journal of Biological Macromolecules, vol. 8, no. 2, pp. 108–113, 1986. View at Google Scholar · View at Scopus
  28. D. Vestweber and J. E. Blanks, “Mechanisms that regulate the function of the selectins and their ligands,” Physiological Reviews, vol. 79, no. 1, pp. 181–213, 1999. View at Google Scholar · View at Scopus
  29. M. P. Bevilacqua and R. M. Nelson, “Selectins,” Journal of Clinical Investigation, vol. 91, no. 2, pp. 379–387, 1993. View at Google Scholar · View at Scopus
  30. S. D. Rosen and C. R. Bertozzi, “The selectins and their ligands,” Current Opinion in Cell Biology, vol. 6, no. 5, pp. 663–673, 1994. View at Google Scholar · View at Scopus
  31. E. L. Berg, L. M. McEvoy, C. Berlin, R. F. Bargatze, and E. C. Butcher, “L-selectin-mediated lymphocyte rolling on MAdCAM-1,” Nature, vol. 366, no. 6456, pp. 695–698, 1993. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Baumhueter, M. S. Singer, W. Henzel et al., “Binding of L-selectin to the vascular sialomucin CD34,” Science, vol. 262, no. 5132, pp. 436–438, 1993. View at Google Scholar · View at Scopus
  33. C. Sassetti, K. Tangemann, M. S. Singer, D. B. Kershaw, and S. D. Rosen, “Identification of Podocalyxin-like protein as a high endothelial venule ligand for L-selectin: parallels to CD34,” Journal of Experimental Medicine, vol. 187, no. 12, pp. 1965–1975, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Imai, L. A. Lasky, and S. D. Rosen, “Sulphation requirement for GlyCAM-1, an endothelial ligand for L-selectin,” Nature, vol. 361, no. 6412, pp. 555–557, 1993. View at Publisher · View at Google Scholar · View at Scopus
  35. M. L. Arbonés, D. C. Ord, K. Ley et al., “Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice,” Immunity, vol. 1, no. 4, pp. 247–260, 1994. View at Google Scholar · View at Scopus
  36. T. R. Mosmann, H. Cherwinski, M. W. Bond, M. A. Giedlin, and R. L. Coffman, “Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins,” Journal of Immunology, vol. 136, no. 7, pp. 2348–2357, 1986. View at Google Scholar
  37. F. Petersen, L. Bock, H. D. Flad, and E. Brandt, “A chondroitin sulfate proteoglycan on human neutrophils specifically binds platelet factor 4 and is involved in cell activation,” Journal of Immunology, vol. 161, no. 8, pp. 4347–4355, 1998. View at Google Scholar · View at Scopus
  38. P. Morreale, R. Manopulo, M. Galati, L. Boccanera, G. Saponati, and L. Bocchi, “Comparison of the antiinflammatory efficacy of chondroitin sulfate and diclofenac sodium in patients with knee osteoarthritis,” Journal of Rheumatology, vol. 23, no. 8, pp. 1385–1391, 1996. View at Google Scholar · View at Scopus
  39. F. Ronca, L. Palmieri, P. Panicucci, and G. Ronca, “Anti-inflammatory activity of chondroitin sulfate,” Osteoarthritis and Cartilage, vol. 6, pp. 14–21, 1998. View at Google Scholar · View at Scopus
  40. J. Zhou, P. Nagarkatti, Y. Zhong, and M. Nagarkatti, “Immune modulation by chondroitin sulfate and its degraded disaccharide product in the development of an experimental model of multiple sclerosis,” Journal of Neuroimmunology, vol. 223, no. 1-2, pp. 55–64, 2010. View at Publisher · View at Google Scholar · View at Scopus