Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2014 (2014), Article ID 380296, 9 pages
http://dx.doi.org/10.1155/2014/380296
Research Article

One Step Photopolymerization of N, N-Methylene Diacrylamide and Photocuring of Carboxymethyl Starch-Silver Nanoparticles onto Cotton Fabrics for Durable Antibacterial Finishing

Textile Research Division, National Research Centre, El-Behooth Street, Dokki, Giza, P.O. Box 12311, Egypt

Received 7 February 2014; Revised 14 June 2014; Accepted 5 July 2014; Published 17 July 2014

Academic Editor: John F. Kennedy

Copyright © 2014 M. A. El-Sheikh and H. M. Ibrahim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Chen, W. Cai, L. Zhang, G. Wang, and L. Zhang, “Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica,” Journal of Colloid and Interface Science, vol. 238, no. 2, pp. 291–295, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Frattini, N. Pellegri, D. Nicastro, and O. de Sanctis, “Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes,” Materials Chemistry and Physics, vol. 94, no. 1, pp. 148–152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. A. A. Hebeish, M. H. El-Rafie, F. A. Abdel-Mohdy, E. S. Abdel-Halim, and H. E. Emam, “Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles,” Carbohydrate Polymers, vol. 82, no. 3, pp. 933–941, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. V. K. Sharma, R. A. Yngard, and Y. Lin, “Silver nanoparticles: Green synthesis and their antimicrobial activities,” Advances in Colloid and Interface Science, vol. 145, no. 1-2, pp. 83–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Hebeish, A. El-Shafei, S. Sharaf, and S. Zaghloul, “Novel precursors for green synthesis and application of silver nanoparticles in the realm of cotton finishing,” Carbohydrate Polymers, vol. 84, no. 1, pp. 605–613, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Saxena, R. M. Tripathi, F. Zafar, and P. Singh, “Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity,” Materials Letters, vol. 67, no. 1, pp. 91–94, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Chen, J. Wang, X. Zhang, and Y. Jin, “Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate,” Materials Chemistry and Physics, vol. 108, no. 2-3, pp. 421–424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Sathishkumar, K. Sneha, S. W. Won, C.-W. Cho, S. Kim, and Y.-S. Yun, “Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity,” Colloids and Surfaces B: Biointerfaces, vol. 73, no. 2, pp. 332–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. E. S. Abdel-Halim, M. H. El-Rafie, and S. S. Al-Deyab, “Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles,” Carbohydrate Polymers, vol. 85, no. 3, pp. 692–697, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. H. El-Rafie, T. I. Shaheen, A. A. Mohamed, and A. Hebeish, “Bio-synthesis and applications of silver nanoparticles onto cotton fabrics,” Carbohydrate Polymers, vol. 90, no. 2, pp. 915–920, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Vankar and D. Shukla, “Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric,” Applied Nanoscience, vol. 2, no. 2, pp. 163–168, 2012. View at Google Scholar
  12. N. Vigneshwaran, R. P. Nachane, R. H. Balasubramanya, and P. V. Varadarajan, “A novel one-pot 'green' synthesis of stable silver nanoparticles using soluble starch,” Carbohydrate Research, vol. 341, no. 12, pp. 2012–2018, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Vijayaraghavan, S. P. K. Nalini, N. U. Prakash, and D. Madhankumar, “One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum,” Colloids and Surfaces B: Biointerfaces, vol. 94, pp. 114–117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Yagci, M. Sangermano, and G. Rizza, “A visible light photochemical route to silver-epoxy nanocomposites by simultaneous polymerization-reduction approach,” Polymer, vol. 49, no. 24, pp. 5195–5198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Yagci, O. Sahin, T. Ozturk, S. Marchi, S. Grassini, and M. Sangermano, “Synthesis of silver/epoxy nanocomposites by visible light sensitization using highly conjugated thiophene derivatives,” Reactive and Functional Polymers, vol. 71, no. 8, pp. 857–862, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Balan, J. Malval, R. Schneider, D. le Nouen, and D. Lougnot, “In-situ fabrication of polyacrylate-silver nanocomposite through photoinduced tandem reactions involving eosin dye,” Polymer, vol. 51, no. 6, pp. 1363–1369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Keller, C. Decker, K. Zahouily, S. Benfarhi, J. M. Le Meins, and J. Miehe-Brendle, “Synthesis of polymer nanocomposites by UV-curing of organoclay-acrylic resins,” Polymer, vol. 45, no. 22, pp. 7437–7447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Decker, L. Keller, K. Zahouily, and S. Benfarhi, “Synthesis of nanocomposite polymers by UV-radiation curing,” Polymer, vol. 46, no. 17, pp. 6640–6648, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Balan, R. Schneider, and D. J. Lougnot, “A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization,” Progress in Organic Coatings, vol. 62, no. 3, pp. 351–357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Balan, M. Jin, J. Malval, H. Chaumeil, A. Defoin, and L. Vidal, “Fabrication of silver nanoparticle-embedded polymer promoted by combined photochemical properties of a 2,7-diaminofluorene derivative dye,” Macromolecules, vol. 41, no. 23, pp. 9359–9365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Balan and D. Burget, “Synthesis of metal/polymer nanocomposite by UV-radiation curing,” European Polymer Journal, vol. 42, no. 12, pp. 3180–3189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. El-Sheikh, “A novel photosynthesis of carboxymethyl starch-stabilized silver nanoparticles,” The Scientific World Journal, vol. 2014, Article ID 514563, 11 pages, 2014. View at Publisher · View at Google Scholar
  23. L. Balan, J.-P. Malval, and D.-J. Lougnot, “In situ photochemically assisted synthesis of silver nanoparticles in polymer matrixes,” in Silver Nanoparticles, D. P. Perez, Ed., pp. 79–92, In-Tech, Croatia, 2010. View at Google Scholar
  24. V. Alt, T. Bechert, P. Steinrücke et al., “An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement,” Biomaterials, vol. 25, no. 18, pp. 4383–4391, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. S. A. S. Shah, M. Nag, T. Kalagara, S. Singh, and S. V. Manorama, “Silver on PEG-PU-TiO2 polymer nanocomposite films: an excellent system for antibacterial applications,” Chemistry of Materials, vol. 20, no. 7, pp. 2455–2460, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Dastjerdi, M. R. M. Mojtahedi, A. M. Shoshtari, and A. Khosroshahi, “Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns,” Journal of the Textile Institute, vol. 101, no. 3, pp. 204–213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Jia, X. Ma, D. Wei, J. Dong, and W. Qian, “Direct formation of silver nanoparticles in cuttlebone-derived organic matrix for catalytic applications,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 330, no. 2-3, pp. 234–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Y. Yang and J. Y. Seo, “Cellular interactions on nano-structured polyelectrolyte multilayers,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 313-314, pp. 526–529, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Durán, P. D. Marcato, G. I. H. De Souza, O. L. Alves, and E. Esposito, “Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment,” Journal of Biomedical Nanotechnology, vol. 3, no. 2, pp. 203–208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. Q. Cheng, C. Li, V. Pavlinek, P. Saha, and H. Wang, “Surface-modified antibacterial TiO2/Ag+ nanoparticles: preparation and properties,” Applied Surface Science, vol. 252, no. 12, pp. 4154–4160, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S. H. Jeong, S. Y. Yeo, and S. C. Yi, “The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers,” Journal of Materials Science, vol. 40, no. 20, pp. 5407–5411, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. S. T. Dubas, P. Kumlangdudsana, and P. Potiyaraj, “Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 289, no. 1–3, pp. 105–109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Dastjerdi, M. R. M. Mojtahedi, and A. M. Shoshtari, “Comparing the effect of three processing methods for modification of filament yarns with inorganic nanocomposite filler and their bioactivity against staphylococcus aureus,” Macromolecular Research, vol. 17, no. 6, pp. 378–387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Y. Yeo and S. H. Jeong, “Preparation and characterization of polypropylene/silver nanocomposite fibers,” Polymer International, vol. 52, no. 7, pp. 1053–1057, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. A. R. Horrocks and S. C. Anand, Handbook of Technical Textiles, Woodhead Publishing Limited, the Textile Institute, Cambridge, UK, 2000.
  36. Y. Gao and R. Cranston, “Recent advances in antimicrobial treatments of textiles,” Textile Research Journal, vol. 78, no. 1, pp. 60–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Gorenšek and P. Recelj, “Nanosilver functionalized cotton fabric,” Textile Research Journal, vol. 77, no. 3, pp. 138–141, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Falletta, M. Bonini, E. Fratini et al., pp. 412–414, Santa Clara, Calif, USA, 2007.
  39. Y. A. Son, B. S. Kim, K. Ravikumar, and S. G. Lee, “Imparting durable antimicrobial properties to cotton fabrics using quaternary ammonium salts through 4-aminobenzenesulfonic acid-chloro-triazine adduct,” European Polymer Journal, vol. 42, no. 11, pp. 3059–3067, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Lim and S. M. Hudson, “Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish,” Carbohydrate Polymers, vol. 56, no. 2, pp. 227–234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. W. K. Son, J. H. Youk, and W. H. Park, “Antimicrobial cellulose acetate nanofibers containing silver nanoparticles,” Carbohydrate Polymers, vol. 65, no. 4, pp. 430–434, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Textor, M. M. G. Fouda, and B. Mahltig, “Deposition of durable thin silver layers onto polyamides employing a heterogeneous Tollens' reaction,” Applied Surface Science, vol. 256, no. 8, pp. 2337–2342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Montazer, F. Alimohammadi, A. Shamei, and M. K. Rahimi, “In situ synthesis of nano silver on cotton using Tollens' reagent,” Carbohydrate Polymers, vol. 87, no. 2, pp. 1706–1712, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Montazer, F. Alimohammadi, A. Shamei, and M. K. Rahimi, “Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing,” Colloids and Surfaces B: Biointerfaces, vol. 89, no. 1, pp. 196–202, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Gouda, “Nano-zirconium oxide and nano-silver oxide/cotton gauze fabrics for antimicrobial and wound healing acceleration,” Journal of Industrial Textiles, vol. 41, no. 3, pp. 222–240, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. V. Thomas, M. Bajpai, and S. K. Bajpai, “In situ formation of silver nanoparticles within chitosan-attached cotton fabric for antibacterial property,” Journal of Industrial Textiles, vol. 40, no. 3, pp. 229–245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. W. Su, S. S. Wei, S. Q. Hu, and J. X. Tang, “Antimicrobial finishing of cotton textile with nanosized silver colloids synthesized using polyethylene glycol,” Journal of the Textile Institute, vol. 102, no. 2, pp. 150–156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Ghosh, A. Upadhay, A. Kr.Singh, and A. Kumar, “Investigation of antimicrobial activity of silver nano particle loaded cotton fabrics which may promote wound healing,” International Journal of Pharma and Bio Sciences, vol. 1, no. 3, article 32, 2010. View at Google Scholar · View at Scopus
  49. M. H. El-Rafie, A. A. Mohamed, T. I. Shaheen, and A. Hebeish, “Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics,” Carbohydrate Polymers, vol. 80, no. 3, pp. 779–782, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. A. I. Wasif and S. K. Laga, “Use of nano silver as an antimicrobial agent for cotton,” Autex Research Journal, vol. 9, no. 1, pp. 5–13, 2009. View at Google Scholar · View at Scopus
  51. M. P. Sathianarayanan and N. V. Bhat, “Durable antibacterial finishing of cotton fabrics using silver nanoparticles,” BTRA Scan, vol. 39, no. 3, pp. 9–16, 2009. View at Google Scholar · View at Scopus
  52. M. Parthiban and G. Thilagavathi, “Effect of nano silver application on microbe resistance of cotton, P/C and lycra blended fabrics,” Colourage, vol. 57, no. 4, pp. 40–44, 2009. View at Google Scholar · View at Scopus
  53. G. Li, B. Peng, L. Chai, L. Liu, and Y. Liu, pp. 3–6, San Francisco, Calif, USA, 2009.
  54. M. S. Khalil-Abad, M. E. Yazdanshenas, and M. R. Nateghi, “Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity,” Cellulose, vol. 16, no. 6, pp. 1147–1157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. N. V. Ke Thanh and N. T. Phuong Phong, “Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid,” Journal of Physics: Conference Series, vol. 187, Article ID 012072, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Tomšič, B. Simončič, D. Cvijn, B. Orel, M. Zorko, and A. Simončič, “Elementary nano sized silver as antibacterial agent on cotton fabric,” Original Scientific Paper, vol. 51, no. 7–9, pp. 199–215, 2008. View at Google Scholar
  57. P. Gupta, M. Bajpai, and S. K. Bajpai, “Textile technology: investigation of antibacterial properties of silver nanoparticle-loaded poly (acrylamide-co-itaconic acid)-grafted cotton fabric,” Journal of Cotton Science, vol. 12, no. 3, pp. 280–286, 2008. View at Google Scholar · View at Scopus
  58. N. Vigneshwaran, A. A. Kathe, P. V. Varadarajan, R. P. Nachane, and R. H. Balasubramanya, “Functional finishing of cotton fabrics using silver nanoparticles,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 6, pp. 1893–1897, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Messaoud, E. Chadeau, C. Brunon et al., “Photocatalytic generation of silver nanoparticles and application to the antibacterial functionalization of textile fabrics,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 215, no. 2-3, pp. 147–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Vigneshwaran, S. Kumar, A. A. Kathe, P. V. Varadarajan, and V. Prasad, “Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites,” Nanotechnology, vol. 17, no. 20, pp. 5087–5095, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Dastjerdi, M. Montazer, and S. Shahsavan, “A new method to stabilize nanoparticles on textile surfaces,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 345, no. 1–3, pp. 202–210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. M. A. El-Sheikh, Synthesis of new polymeric materials based on water-soluble starch composites [Ph.D. thesis], Cairo University, Cairo, Egypt, 1999.
  63. M. A. El-Sheikh, “Photo grafting of acrylamide onto carboxymethyl starch—part 1: utilization of the product in easy care finishing of cotton fabric,” in Proceedings of the 3rd Aachen-Dresden International Textile Conference, pp. 1–30, Aachen, Germany, 2009.
  64. M. A. El-Sheikh, “Synthesis of poly acrylamide-g-carboxymethyl starch silver nanoparticles composite and its corresponding hydrogel,” in Proceedings of the 7th Aachen-Dresden International Textile Conference, pp. 1–43, Aachen, Germany, 2013.
  65. M. A. El-Sheikh, L. K. El-Gabry, and H. M. Ibrahim, “Photosynthesis of carboxymethyl starch-stabilized silver nanoparticles and utilization to impart antibacterial finishing for wool and acrylic fabrics,” Journal of Polymers, vol. 2013, Article ID 792035, 9 pages, 2013. View at Publisher · View at Google Scholar
  66. M. A. El-Sheikh, “Carboxymethylation of maize starch at mild conditions,” Carbohydrate Polymers, vol. 79, no. 4, pp. 875–881, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. G. C. Daul, R. M. Reinhardt, and J. D. Reid, “Preparation of soluble yarns by the carboxymethylation of cotton,” Textile Research Journal, vol. 23, no. 10, pp. 719–726, 1953. View at Google Scholar
  68. N. Y. Abou-Zeid, A. I. Waly, N. G. Kandile, A. A. Rushdy, M. A. El-Sheikh, and H. M. Ibrahim, “Preparation, characterization and antibacterial properties of cyanoethylchitosan/cellulose acetate polymer blended films,” Carbohydrate Polymers, vol. 84, no. 1, pp. 223–230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. CLSI, Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, Clinical Laboratory Standards Institute, Wayne, Pa, USA, 9th edition, 2006.
  70. J. H. Jorgensen and J. D. Turnidge, “Susceptibility test methods: dilution and disk diffusion methods,” in Manual of Clinical Microbiology, P. R. Murray, E. J. Baron, J. H. Jorgensen, M. L. Landry, and M. A. Pfaller, Eds., pp. 1152–1172, ASM Press, Washington, DC, USA, 2007. View at Google Scholar
  71. M. H. El-Rafie, M. E. El-Naggar, M. A. Ramadan, M. M. G. Fouda, S. S. Al-Deyab, and A. Hebeish, “Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization,” Carbohydrate Polymers, vol. 86, no. 2, pp. 630–635, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. A. P. Kumar and R. P. Singh, “Biocomposites of cellulose reinforced starch: improvement of properties by photo-induced crosslinking,” Bioresource Technology, vol. 99, no. 18, pp. 8803–8809, 2008. View at Publisher · View at Google Scholar · View at Scopus