Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chronic Diseases
Volume 2015, Article ID 680104, 8 pages
http://dx.doi.org/10.1155/2015/680104
Review Article

Does Intensive Glucose Control Prevent Cognitive Decline in Diabetes? A Meta-Analysis

1Universidad Catolica de Santiago de Guayaquil, 090112 Guayas, Ecuador
2Miller School of Medicine, University of Miami, Miami, FL 33136, USA

Received 27 June 2015; Accepted 16 July 2015

Academic Editor: Katarzyna Zorena

Copyright © 2015 Carlos Peñaherrera-Oviedo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Diabetes Association, “Standards of medical care in diabetes—2014,” Diabetes Care, vol. 37, supplement 1, pp. S14–S80, 2014. View at Google Scholar
  2. International Diabetes Federation, IDF Diabetes Atlas, International Diabetes Federation, Brussels, Belgium, 6th edition, 2013.
  3. S. C. M. Croxson and C. Jagger, “Diabetes and cognitive impairment: a community-based study of elderly subjects,” Age and Ageing, vol. 24, no. 5, pp. 421–424, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Ohara, Y. Doi, T. Ninomiya et al., “Glucose tolerance status and risk of dementia in the community: the Hisayama study,” Neurology, vol. 77, no. 12, pp. 1126–1134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Ott, R. P. Stolk, A. Hofman, F. van Harskamp, D. E. Grobbee, and M. M. B. Breteler, “Association of diabetes mellitus and dementia: the Rotterdam Study,” Diabetologia, vol. 39, no. 11, pp. 1392–1397, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Kalmijn, E. J. M. Feskens, L. J. Launer, T. Stijnen, and D. Kromhout, “Glucose intolerance, hyperinsulinaemia and cognitive function in a general population of elderly men,” Diabetologia, vol. 38, no. 9, pp. 1096–1102, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Dey, A. Misra, N. G. Desai, A. K. Mahapatra, and M. V. Padma, “Cognitive function in younger type II diabetes,” Diabetes Care, vol. 20, no. 1, pp. 32–35, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. C. M. Ryan and M. O. Geckle, “Circumscribed cognitive dysfunction in middle-aged adults with type 2 diabetes,” Diabetes Care, vol. 23, no. 10, pp. 1486–1493, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Palta, A. L. C. Schneider, G. J. Biessels, P. Touradji, and F. Hill-Briggs, “Magnitude of cognitive dysfunction in adults with type 2 diabetes: a meta-analysis of six cognitive domains and the most frequently reported neuropsychological tests within domains,” Journal of the International Neuropsychological Society, vol. 20, no. 3, pp. 278–291, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. P. A. Gaudieri, R. Chen, T. F. Greer, and C. S. Holmes, “Cognitive function in children with type 1 diabetes: a meta-analysis,” Diabetes Care, vol. 31, no. 9, pp. 1892–1897, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. Cato, N. Mauras, J. Ambrosino et al., “Cognitive functioning in young children with type 1 diabetes,” Journal of the International Neuropsychological Society, vol. 20, no. 2, pp. 238–247, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. The Action to Control Cardiovascular Risk in Diabetes Study Group, “Effects of intensive glucose lowering in type 2 diabetes,” The New England Journal of Medicine, vol. 358, no. 24, pp. 2545–2459, 2008. View at Publisher · View at Google Scholar
  13. P. Reichard, A. Britz, and U. Rosenqvist, “Intensified conventional insulin treatment and neuropsychological impairment,” British Medical Journal, vol. 303, no. 6815, pp. 1439–1442, 1991. View at Google Scholar · View at Scopus
  14. The Diabetes Control and Complications Trial Research Group, “Effects of intensive diabetes therapy on neuropsychological function in adults in the diabetes control and complications trial,” Annals of Internal Medicine, vol. 124, no. 4, pp. 379–388, 1996. View at Google Scholar
  15. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group, “Long-term effect of diabetes and its treatment on cognitive function,” The New England Journal of Medicine, vol. 356, no. 18, pp. 1842–1852, 2007. View at Publisher · View at Google Scholar
  16. G. Musen, A. M. Jacobson, C. M. Ryan et al., “Impact of diabetes and its treatment on cognitive function among adolescents who participated in the diabetes control and complications trial,” Diabetes Care, vol. 31, no. 10, pp. 1933–1938, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Naor, H. J. Steingrüber, K. Westhoff, Y. Schottenfeld-Naor, and A. F. Gries, “Cognitive function in elderly non-insulin-dependent diabetic patients before and after inpatient treatment for metabolic control,” Journal of Diabetes and Its Complications, vol. 11, no. 1, pp. 40–46, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. L. J. Launer, M. E. Miller, J. D. Williamson et al., “Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy,” The Lancet Neurology, vol. 10, no. 11, pp. 969–977, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. P. S. Koekkoek, C. Ruis, M. van den Donk et al., “Intensive multifactorial treatment and cognitive functioning in screen-detected type 2 diabetes—the ADDITION-Netherlands study: a cluster-randomized trial,” Journal of the Neurological Sciences, vol. 314, no. 1-2, pp. 71–77, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Wechsler, Wechsler Adult Intelligence Scale, The Psychological Corporation, Harcourt Brace, San Antonio, Tex, USA, 3rd edition, 1997.
  21. War Department Adjutant General's Office, Army Individual Test Battery: Manual of Directions and Scoring, War Department Adjutant General's Office, Washington, DC, USA, 1944.
  22. M. Schmidt, Rey Auditory and Verbal Learning Test: A Handbook, Western Psychological Services, Los Angeles, Calif, USA, 1996.
  23. R. M. Reitan, The Halstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation, Neuropsychology Press, S. Tucson, Ariz, USA, 2nd edition, 1993.
  24. J. R. Stroop, “Studies of interference in serial verbal reactions,” Journal of Experimental Psychology, vol. 18, no. 6, pp. 643–662, 1935. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Strauss, E. M. S. Sherman, and O. Spreen, A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary, Oxford University Press, New York, NY, USA, 3rd edition, 2006.
  26. T. Hershey, N. Bhargava, M. Sadler, N. H. White, and S. Craft, “Conventional versus intensive diabetes therapy in children with type 1 diabetes: effects on memory and motor speed,” Diabetes Care, vol. 22, no. 8, pp. 1318–1324, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Hong and V. M.-Y. Lee, “Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons,” The Journal of Biological Chemistry, vol. 272, no. 31, pp. 19547–19553, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. R. D. Lindeman, L. J. Romero, A. Larue et al., “A biethnic community survey of cognition in participants with type 2 diabetes, impaired glucose tolerance, and normal glucose tolerance—the New Mexico elder health survey,” Diabetes Care, vol. 24, no. 9, pp. 1567–1572, 2001. View at Google Scholar · View at Scopus
  29. J. Hung, L. Menth, M. J. Thompson, B. Saner, K. V. Rao, and J. Barbosa, “The Minnesota diabetes complications clinical trial cognitive functions under long term maximized and standard metabolic controls,” Diabète et Métabolisme, vol. 10, no. 1, pp. 48–51, 1984. View at Google Scholar · View at Scopus
  30. A. Araki, S. Iimuro, T. Sakurai et al., “Long-term multiple risk factor interventions in Japanese elderly diabetic patients: the Japanese Elderly Diabetes Intervention Trial—study design, baseline characteristics and effects of intervention,” Geriatrics and Gerontology International, vol. 12, supplement 1, pp. 7–17, 2012. View at Publisher · View at Google Scholar · View at Scopus