Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2012, Article ID 193639, 16 pages
Research Article

CFD Study of Industrial FCC Risers: The Effect of Outlet Configurations on Hydrodynamics and Reactions

1School of Chemical Engineering, University of Campinas, 500 Albert Einstein Avenue, 13083-970 Campinas, SP, Brazil
2PETROBRAS, 65 República do Chile Avenue, 20031-912 Rio de Janeiro, RJ, Brazil

Received 4 September 2012; Accepted 7 November 2012

Academic Editor: Jerzy Bałdyga

Copyright © 2012 Gabriela C. Lopes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Fluid catalytic cracking (FCC) riser reactors have complex hydrodynamics, which depend not only on operating conditions, feedstock quality, and catalyst particles characteristics, but also on the geometric configurations of the reactor. This paper presents a numerical study of the influence of different riser outlet designs on the dynamic of the flow and reactor efficiency. A three-dimensional, three-phase flow model and a four-lump kinetic scheme were used to predict the performance of the reactor. The phenomenon of vaporization of the liquid oil droplets was also analyzed. Results showed that small changes in the outlet configuration had a significant effect on the flow patterns and consequently, on the reaction yields.