Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2012 (2012), Article ID 674761, 10 pages
http://dx.doi.org/10.1155/2012/674761
Review Article

The Challenge of Efficient Synthesis of Biofuels from Lignocellulose for Future Renewable Transportation Fuels

1Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Åbo Akademi University, 20500 Åbo-Turku, Finland
2Technical Chemistry, Department of Chemistry, Chemical-Biological Center, Umeå University, 901 87 Umeå, Sweden

Received 22 June 2011; Revised 21 September 2011; Accepted 6 October 2011

Academic Editor: David Kubička

Copyright © 2012 Päivi Mäki-Arvela et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Birol, World Energy Outlook 2010, International Energy Agency, Paris, France, 2010.
  2. G. Centi, P. Lanzafame, and S. Perathoner, “Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials,” Catalysis Today, vol. 167, pp. 14–30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. IEA, World Energy Outlook 2009, International Energy Agency, Paris, France, 2009.
  4. J. Goettemoeller and A. Goettemoeller, “The history of vegetable oil based diesel fuels,” in The Biodiesel Handbook, G. Knothe, Ed., chapter 2, 2007. View at Google Scholar
  5. J. Goettemoeller and A. Goettemoeller, Sustainable Ethanol: Biofuels, Biorefineries, Cellulosic Biomass, Flex-Fuel Vehicles, and Sustainable Farming for Energy Independence, Prairie Oak Publishing, Maryville, Mo, USA, 2007.
  6. http://www.preem.se.
  7. http://www.sunpine.se.
  8. http://www.nesteoil.fi.
  9. P. Mäki-Arvela, T. Salmi, B. Holmbom, S. Willför, and D. Y. Murzin, “Synthesis of sugars by hydrolysis of hemicelluloses- A review,” Chemical Reviews, vol. 111, no. 9, pp. 5638–5666, 2011. View at Publisher · View at Google Scholar
  10. P. Mäki-Arvela, I. Anugwom, P. Virtanen, R. Sjöholm, and J. P. Mikkola, “Dissolution of lignocellulosic materials and its constituents using ionic liquids-A review,” Industrial Crops and Products, vol. 32, no. 3, pp. 175–201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Zhang and Z. K. Zhao, “Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid,” Bioresource Technology, vol. 101, no. 3, pp. 1111–1114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Wang, H. Yu, S. Zhan, and S. Wang, “Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid,” Bioresource Technology, vol. 102, no. 5, pp. 4179–4183, 2011. View at Publisher · View at Google Scholar
  13. J. B. Binder and R. T. Raines, “Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals,” Journal of the American Chemical Society, vol. 131, no. 5, pp. 1979–1985, 2009. View at Google Scholar · View at Scopus
  14. M. E. Zakrzewska, E. Bogel-Łukasik, and R. Bogel-Łukasik, “Ionic liquid-mediated formation of 5-hydroxymethylfurfural-A promising biomass-derived building block,” Chemical Reviews, vol. 111, no. 2, pp. 397–417, 2011. View at Publisher · View at Google Scholar
  15. J. B. Binder and R. T. Raines, “Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals,” WO2009/155297 A1.
  16. A. Bruggink, R. Schoevaart, and T. Kieboom, “Concepts of nature in organic synthesis: cascade catalysis and multistep conversions in concert,” Organic Process Research and Development, vol. 7, no. 5, pp. 622–640, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Moreau, A. Finiels, and L. Vanoye, “Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst,” Journal of Molecular Catalysis A, vol. 253, no. 1-2, pp. 165–169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Gruter, L. E. Manzer, A. S. V. De Sousa Dias, F. Dautzenberg, and J. Purmova, “Hydroxymethylfurfural ethers and esters prepared in ionic liquids,” WO2009/030512.
  19. T. Ståhlberg, S. Rodriguez-Rodriguez, P. Fristrup, and A. Riisager, “Metal-free dehydration of glucose to 5-(Hydroxymethyl)furfural in ionic liquids with boric acid as a promoter,” Chemistry, vol. 17, no. 5, pp. 1456–1464, 2011. View at Publisher · View at Google Scholar
  20. J. P. Mikkola, P. Virtanen, and R. Sjöholm, “Aliquat 336—A versatile and affordable cation source for an entirely new family of hydrophobic ionic liquids,” Green Chemistry, vol. 8, no. 3, pp. 250–255, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Virtanen, J. P. Mikkola, E. Toukoniitty et al., “Supported ionic liquid catalysts-From batch to continuous operation in preparation of fine chemicals,” Catalysis Today, vol. 147, pp. S144–S148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Virtanen, H. Karhu, G. Toth, K. Kordas, and J. P. Mikkola, “Towards one-pot synthesis of menthols from citral: modifying Supported Ionic Liquid Catalysts (SILCAs) with Lewis and Brønsted acids,” Journal of Catalysis, vol. 263, no. 2, pp. 209–219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Hara, J. P. Mikkola, D. Y. Murzin, and L. T. Kanerva, “Supported ionic liquids in Burkholderia cepacia lipase-catalyzed asymmetric acylation,” Journal of Molecular Catalysis B, vol. 67, no. 1-2, pp. 129–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Pezoa, V. Cortinez, S. Hyvärinen et al., “Use of ionic liquids in the pretreatment of forest and agricultural residues for the production of bioethanol,” Cellulose Chemistry and Technology, vol. 44, no. 4–6, pp. 165–172, 2010. View at Google Scholar · View at Scopus
  25. B. F. M. Kuster, “5-hydroxymethylfurfural (HMF). A review focusing on its manufacture,” Starch/Stärke, vol. 42, pp. 314–321, 1990. View at Google Scholar
  26. C. Li, Z. K. Zhao, A. Wang, M. Zheng, and T. Zhang, “Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions,” Carbohydrate Research, vol. 345, no. 13, pp. 1846–1850, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. B. Sidhpuria, A. L. Daniel-Da-Silva, T. Trindade, and J. A. P. Coutinho, “Supported ionic liquid silica nanoparticles (SILnPs) as an efficient and recyclable heterogeneous catalyst for the dehydration of fructose to 5-hydroxymethylfurfural,” Green Chemistry, vol. 13, no. 2, pp. 340–349, 2011. View at Publisher · View at Google Scholar
  28. E. Salminen, P. Virtanen, P. Mäki-Arvela, N. Kumar, and J.-P. Mikkola, “Synthesis of 5-hydroxymethylfurfural (HMF) over acid/alkaline modified supported ionic liquid catalysts,” in Proceedings of the International Congress on Renewable Energy (ICORE '11), S. K. Samdarshi, S. Mahapatra, and S. Paul, Eds., Assam, India, 2011.
  29. J. A. Dumesic, Y. Roman-Leshkov, and J. N. Chheda, “Catalytic process for producing furan derivatives in a biphasic reactor,” US Patent no. 7572925 B2, 2009.
  30. M. Chidambaram and A. T. Bell, “A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids,” Green Chemistry, vol. 12, no. 7, pp. 1253–1262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Lewkowski, “Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives,” Arkivoc, vol. 2001, no. 1, pp. 17–54, 2001. View at Google Scholar · View at Scopus
  32. Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu, and J. A. Dumesic, “Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates,” Nature, vol. 447, no. 7147, pp. 982–985, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. L. G. Anderson, “Ethanol fuel use in Brazil: air quality impacts,” Energy and Environmental Science, vol. 2, no. 10, pp. 1015–1037, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. R. L. Tanner, “Atmospheric chemistry of aldehydes: enhanced peroxyacetyl nitrate formation from ethanol-fueled vehicular emissions,” Environmental Science and Technology, vol. 22, no. 9, pp. 1026–1034, 1988. View at Google Scholar · View at Scopus
  35. http://www.bioraffinaderi.se/.
  36. E. Sjöström, Wood Chemistry, Fundamentals and Applications, Academic press, London, UK, 2nd edition, 1993.
  37. T. Tsuchida, S. Sakuma, T. Takeguchi, and W. Ueda, “Direct synthesis of n-butanol from ethanol over nonstoichiometric hydroxyapatite,” Industrial and Engineering Chemistry Research, vol. 45, no. 25, pp. 8634–8642, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Tsuchida, J. Kubo, T. Yoshioka, S. Sakuma, T. Takeguchi, and W. Ueda, “Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst,” Journal of Catalysis, vol. 259, no. 2, pp. 183–189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. K. W. Yang, X. Z. Jiang, and W. C. Zhang, “One-step synthesis of n-butanol from ethanol condensation over alumina-supported metal catalysts,” Chinese Chemical Letters, vol. 15, no. 12, pp. 1497–1500, 2004. View at Google Scholar · View at Scopus
  40. I. C. Marcu, D. Tichit, F. Fajula, and N. Tanchoux, “Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts,” Catalysis Today, vol. 147, no. 3-4, pp. 231–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. S. Ndou, N. Plint, and N. J. Coville, “Dimerisation of ethanol to butanol over solid-base catalysts,” Applied Catalysis A, vol. 251, no. 2, pp. 337–345, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Yang and Z. Y. Meng, “Bimolecular condensation of ethanol to 1-butanol catalyzed by alkali cation zeolites,” Journal of Catalysis, vol. 142, no. 1, pp. 37–44, 1993. View at Publisher · View at Google Scholar · View at Scopus
  43. L. A. Ashkinazi, “Biobutanol: biofuel of second generation,” Economics of Chemical Industry, vol. 81, no. 12, pp. 2232–2236, 2008. View at Google Scholar
  44. M. Kumar and K. Gayen, “Developments in biobutanol production: new insights,” Applied Energy, vol. 88, no. 6, pp. 1999–2012, 2011. View at Publisher · View at Google Scholar
  45. H. P. Blaschek, “Bioproduction of butanol from biomass: from genes to bioreactors,” Current Opinion in Biotechnology, vol. 18, no. 3, pp. 220–227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. P. H. Pfromm, V. Amanor-Boadu, R. Nelson, P. Vadlani, and R. Madl, “Bio-butanol vs. bio-ethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum,” Biomass and Bioenergy, vol. 34, no. 4, pp. 515–524, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Swana, Y. Yang, M. Behnam, and R. Thompson, “An analysis of net energy production and feedstock availability for biobutanol and bioethanol,” Bioresource Technology, vol. 102, no. 2, pp. 2112–2117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Fukuda, A. Kondo, and H. Noda, “Biodiesel fuel production by transesterification of oils,” Journal of Bioscience and Bioengineering, vol. 92, no. 5, pp. 405–416, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. J. R. Gomes, “Vegetable oil hydroconversion process,” US Patent no. 2006/0186020 A1, 2006.
  50. P. Priecel, D. Kubička, L. Čapek, Z. Bastl, and P. Ryšánek, “The role of Ni species in the deoxygenation of rapeseed oil over NiMo-alumina catalysts,” Applied Catalysis A, vol. 397, no. 1-2, pp. 127–137, 2011. View at Publisher · View at Google Scholar
  51. D. Yu. Murzin, I. Kubickova, M. Snåre, P. Mäki-Arvela, and J. Myllyoja, “Method for the manufacture of hydrocarbons,” WO 2006075057, US Patent no. 7, 491,858, 2009.
  52. O. O. James, S. Maity, L. A. Usman et al., “Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural,” Energy and Environmental Science, vol. 3, no. 12, pp. 1833–1852, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. G. M. M. Gruter and F. Dautzenberg, “Method for the synthesis of 5-alkoxymethyl furfural ethers and their use,” WO2007/104514 A2.
  54. A. J. Sanborn, “Processes for the preparation and purification of hydroxymethyl furaldehyde and derivatives,” WO2006/063220.
  55. J. L. Anderson, J. Ding, T. Welton, and D. W. Armstrong, “Characterizing ionic liquids on the basis of multiple solvation interactions,” Journal of the American Chemical Society, vol. 124, no. 47, pp. 14247–14254, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Zhao, J. E. Holladay, H. Brown, and Z. C. Zhang, “Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural,” Science, vol. 316, no. 5831, pp. 1597–1600, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. F. Ilgen, D. Ott, D. Kralisch, C. Reil, A. Palmberger, and B. König, “Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures,” Green Chemistry, vol. 11, no. 12, pp. 1948–1954, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. Q. Bao, K. Qiao, D. Tomida, and C. Yokoyama, “Preparation of 5-hydroymethylfurfural by dehydration of fructose in the presence of acidic ionic liquid,” Catalysis Communications, vol. 9, no. 6, pp. 1383–1388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. J. P. Mikkola, P. Virtanen, H. Karhu, T. Salmi, and D. Y. Murzin, “Supported ionic liquids catalysts for fine chemicals: citral hydrogenation,” Green Chemistry, vol. 8, no. 2, pp. 197–205, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. C. P. Mehnert, E. J. Mozeleski, and R. A. Cook, “Supported ionic liquid catalysis investigated for hydrogenation reactions,” Chemical Communications, vol. 8, no. 24, pp. 3010–3011, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. U. Kernchen, B. Etzold, W. Korth, and A. Jess, “Solid catalyst ionic liquid layer (SCILL)—A new concept to improve selectivity illustrated by hydrogenation of cyclooctadiene,” Chemical Engineering and Technology, vol. 30, no. 8, pp. 985–994, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Gu, C. Ogawa, J. Kobayashi, Y. Mori, and S. Kobayashi, “A heterogeneous silica-supported scandium/ionic liquid catalyst system for organic reactions in water,” Angewandte Chemie, vol. 45, no. 43, pp. 7217–7220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Riisager, R. Fehrmann, S. Flicker, R. Van Hal, M. Haumann, and P. Wasserscheid, “Very stable and highly regioselective supported ionic-liquid-phase (SILP) catalysis: continuous-flow fixed-bed hydroformylation of propene,” Angewandte Chemie, vol. 44, no. 5, pp. 815–819, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. M. H. Valkenberg, C. DeCastro, and W. F. Hölderich, “Immobilisation of ionic liquids on solid supports,” Green Chemistry, vol. 4, no. 2, pp. 88–93, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. F. Shi, Q. Zhang, D. Li, and Y. Deng, “Silica-gel-confined ionic liquids: a new attempt for the development of supported nanoliquid catalysis,” Chemistry A, vol. 11, no. 18, pp. 5279–5288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. O. Bobleter, “Hydrothermal degradation and fractionation of saccharides and polysaccharides,” in Polysaccharides, Structural Diversity and Functional Versatility, S. Dumitriu, Ed., Marcel Dekker, New York, NY, USA, 2nd edition, 2005. View at Google Scholar
  67. R. C. Kuhad and A. Singh, “Lignocellulose biotechnology. Current and future prospects,” Critical Reviews in Biotechnology, vol. 13, no. 2, pp. 151–172, 1993. View at Google Scholar · View at Scopus
  68. J. H. Sloneker, “Agricultural residues, including feedlot wastes,” Biotechnology and Bioengineering Symposium, no. 6, pp. 235–250, 1976. View at Google Scholar · View at Scopus
  69. A. Pinkert, K. N. Marsh, and S. Pang, “Reflections on the solubility of cellulose,” Industrial and Engineering Chemistry Research, vol. 49, no. 22, pp. 11121–11130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. A. W. T. King, J. Asikkala, I. Mutikainen, P. Järvi, and I. Kilpeläinen, “Distillable acid-base conjugate ionic liquids for cellulose dissolution and processing,” Angewandte Chemie, vol. 50, no. 28, pp. 6301–6305, 2011. View at Publisher · View at Google Scholar
  71. K. J. Zeitsch, The Chemistry and Technology of Furfural and Its Many by-Products, Elsevier Press, Amsterdam, Netherlands, 2000.