Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2012, Article ID 835378, 11 pages
http://dx.doi.org/10.1155/2012/835378
Research Article

Ion-Exchange Membranes Based on Polynorbornenes with Fluorinated Imide Side Chain Groups

1Facultad de Química, Universidad Nacional Autónoma de México, CU, Coyoacán, 04510 México, DF, Mexico
2Facultad de Ingeniería, Universidad Autónoma del Carmen, Avenida Central S/N Esq. con Fracc. Mundo Maya, 24115 Ciudad del Carmen, CAM, Mexico
3Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CU, Apartado Postal 70-360, Coyoacán, 04510 México, DF, Mexico
4Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain

Received 3 February 2012; Revised 11 April 2012; Accepted 15 April 2012

Academic Editor: Seung Hyeon Moon

Copyright © 2012 Arlette A. Santiago et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Sata, Ion-Exchange Membranes, RSC, Cambridge, UK, 2004.
  2. T. Xu, “Ion exchange membranes: state of their development and perspective,” Journal of Membrane Science, vol. 263, no. 1-2, pp. 1–29, 2005. View at Google Scholar
  3. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, “Alternative polymer systems for proton exchange membranes (PEMs),” Chemical Reviews, vol. 104, no. 10, pp. 4587–4612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. P. Contreras, M. A. Tlenkopatchev, M. M. López-González, and E. Riande, “Synthesis and gas transport properties of new high glass transition temperature ring-opened polynorbornenes,” Macromolecules, vol. 35, no. 12, pp. 4677–4684, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Tlenkopatchev, J. Vargas, M. A. Almaraz-Girón, M. López-González, and E. Riande, “Gas sorption in new fluorine containing polynorbornenes with imide side chain groups,” Macromolecules, vol. 38, no. 7, pp. 2696–2703, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Vargas, A. A. Santiago, M. A. Tlenkopatchev, M. López-González, and E. Riande, “Gas transport in membranes based on polynorbornenes with fluorinated dicarboximide side moieties,” Journal of Membrane Science, vol. 361, no. 1-2, pp. 78–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Vargas, A. A. Santiago, M. A. Tlenkopatchev et al., “Gas transport and ionic transport in membranes based on polynorbornenes with functionalized imide side groups,” Macromolecules, vol. 40, no. 3, pp. 563–570, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. A. Santiago, J. Vargas, S. Fomine, R. Gaviño, and M. A. Tlenkopatchev, “Polynorbornene with pentafluorophenyl imide side chain groups: synthesis and sulfonation,” Journal of Polymer Science A, vol. 48, no. 13, pp. 2925–2933, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. O'Hagan, “Understanding organofluorine chemistry. An introduction to the C-F bond,” Chemical Society Reviews, vol. 37, no. 2, pp. 308–319, 2008. View at Publisher · View at Google Scholar
  10. Y. P. Yampol'skii, N. B. Bespalova, E. S. Finkel'shtein, V. I. Bondar, and A. V. Popov, “Synthesis, gas permeability, and gas sorption properties of fluorine-containing norbornene polymers,” Macromolecules, vol. 27, no. 10, pp. 2872–2878, 1994. View at Google Scholar · View at Scopus
  11. A. A. Santiago, J. Vargas, J. Cruz-Gómez et al., “Synthesis and ionic transport of sulfonated ring-opened polynorbornene based copolymers,” Polymer, vol. 52, no. 19, pp. 4208–4220, 2011. View at Publisher · View at Google Scholar
  12. V. Compañ, F. J. Fernández-Carretero, E. Riande, A. Linares, and J. L. Acosta, “Electrochemical properties of ion-exchange membranes based on sulfonated EPDM-polypropylene blends,” Journal of the Electrochemical Society, vol. 154, no. 2, pp. B159–B164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Barsoukov and J. R. Macdonalds, Impedance Spectroscopy: Theory, Experiment and Applications, chapter 2, Wiley, Hoboken, NJ, USA, 2nd edition, 2005.
  14. H. Nyquist, “Thermal agitation of electric charge in conductors,” Physical Review, vol. 32, no. 1, pp. 110–113, 1928. View at Google Scholar
  15. E. Warburg, “About the behaviour of so-called impolarizable electrodes in the presence of alternating current,” Annals of Physics and Chemistry, vol. 67, p. 493, 1899. View at Google Scholar
  16. A. J. Bard and L. R. Faulkner, Electrochemical Methods. Fundamentals and Applications, section 10.3, Wiley, 2nd edition, 2001.
  17. W. W. Bode, Network Analysis in Feedback Amplifier Design, Van Nostrand, Princenton, NJ, USA, 1956.
  18. S. Wu, Polymer Interface and Adhesion, chapter 5, Marcel Dekker, New York, NY, USA, 1982.
  19. H. Ghassemi, J. E. McGrath, and T. A. Zawodzinski Jr., “Multiblock sulfonated-fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell,” Polymer, vol. 47, no. 11, pp. 4132–4139, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. R. O’Hayre, S.-W. Cha, W. Colella, and F. B. Prinz, Fuel Cell Fundamentals, chapter 4, Wiley & Sons, New York, NY, USA, 2006.
  21. X. Guo, F. Zhai, J. Fang, M. F. Heras-Laguna, M. López-González, and E. Riande, “Permselectivity and conductivity of membranes based on sulfonated naphthalenic copolyimides,” Journal of Physical Chemistry B, vol. 111, p. 13694, 2007. View at Google Scholar
  22. S. Yuan, C. del Rio, M. López-González, X. Guo, J. Fang, and E. Riande, “Impedance spectroscopy and performance of cross-linked new naphthalenic polyimide acid membranes,” Journal of Physical Chemistry C, vol. 114, no. 51, pp. 22773–22782, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Garrido, J. Pozuelo, M. López-González, J. Fang, and E. Riande, “Simulation and experimental studies on proton diffusion in polyelectrolytes based on sulfonated naphthalenic copolyimides,” Macromolecules, vol. 42, no. 17, pp. 6572–6580, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. Paddison, “Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes,” Annual Review of Materials Research, vol. 33, pp. 289–319, 2003. View at Google Scholar
  25. K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, “Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology,” Chemical Reviews, vol. 104, no. 10, pp. 4637–4678, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, “Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water,” The Journal of Chemical Physics, vol. 103, no. 1, pp. 150–161, 1995. View at Google Scholar · View at Scopus
  27. M. Tuckerman, K. Laasonen, M. Sprik, and M. Paraniello, “Ab initio molecular dynamics simulation of the solvation and transport of H3O+ and OH- ions in water,” Journal of Physical Chemistry, vol. 99, p. 5749, 1995. View at Google Scholar
  28. M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello, “On the quantum nature of the shared proton in hydrogen bonds,” Science, vol. 275, no. 5301, pp. 817–820, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Marx, M. E. Tuckerman, J. Hutter, and M. Parrinello, “The nature of the hydrated excess proton in water,” Nature, vol. 397, no. 6720, pp. 601–604, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Marx, M. Tuckerman, and M. Paraniello, “Solvated excess protons in water: quantum effects on the hydration structure,” Journal of Physics, vol. 12, no. 8, pp. A153–A159, 2000. View at Google Scholar