Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2013, Article ID 934234, 6 pages
http://dx.doi.org/10.1155/2013/934234
Research Article

Sonochemical Synthesis of Cobalt Ferrite Nanoparticles

1Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India
2Center for Energy, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India

Received 8 August 2013; Revised 28 September 2013; Accepted 4 October 2013

Academic Editor: Jose C. Merchuk

Copyright © 2013 Partha P. Goswami et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. G. Naseri and E. B. Saion, “Crystalization in spinel ferrite nanoparticles,” in Advances in Crystallization Processes, pp. 349–380, 2012. View at Publisher · View at Google Scholar
  2. E. C. Snelling, Soft Ferrites: Properties and Applications, Butterworth, London, UK, 2nd edition, 1989.
  3. K. Maaz, A. Mumtaz, S. K. Hasanain, and A. Ceylan, “Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route,” Journal of Magnetism and Magnetic Materials, vol. 308, no. 2, pp. 289–295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J.-S. Jung, J.-H. Lim, K.-H. Choi et al., “CoFe2O4 nanostructures with high coercivity,” Journal of Applied Physics, vol. 97, no. 10, Article ID 10F306, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. B. G. Toksha, S. E. Shirsath, S. M. Patange, and K. M. Jadhav, “Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol-gel auto combustion method,” Solid State Communications, vol. 147, no. 11-12, pp. 479–483, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Winiarska, I. Szczygieł, and R. Klimkiewicz, “Manganese−zinc ferrite synthesis by the sol−gel autocombustion method. Effect of the precursor on the ferrite’s catalytic properties,” Industrial and Engineering Chemistry Research, vol. 52, pp. 353–361, 2013. View at Google Scholar
  7. Y. Ahn, E. J. Choi, S. Kim, and H. N. Ok, “Magnetization and Mössbauer study of cobalt ferrite particles from nanophase cobalt iron carbonate,” Materials Letters, vol. 50, no. 1, pp. 47–52, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. D. O. Yener and H. Giesche, “Synthesis of pure and manganese-, nickel-, and zinc-doped ferrite particles in water-in-oil microemulsions,” Journal of the American Ceramic Society, vol. 84, no. 9, pp. 1987–1995, 2001. View at Google Scholar · View at Scopus
  9. Y. Lee, J. Lee, C. J. Bae et al., “Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions,” Advanced Functional Materials, vol. 15, pp. 503–509, 2005. View at Google Scholar · View at Scopus
  10. S. H. Xiao, W. F. Jiang, L. Y. Li, and X. J. Li, “Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder,” Materials Chemistry and Physics, vol. 106, no. 1, pp. 82–87, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Elahi, R. Zahira, K. Mehmood, A. Jamil, and N. Amin, “Co-precipitation synthesis, physical and magnetic properties of manganese ferrite powder,” African Journal of Pure and Applied Chemistry, vol. 6, pp. 1–5, 2012. View at Google Scholar
  12. M. Sivakumar, A. Gedanken, W. Zhong et al., “Nanophase formation of strontium hexaferrite fine powder by the sonochemical method using Fe(CO)5,” Journal of Magnetism and Magnetic Materials, vol. 268, no. 1-2, pp. 95–104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Sivakumar, A. Gedanken, D. Bhattacharya et al., “Sonochemical synthesis of nanocrystalline rare earth orthoferrites using Fe(CO)5 precursor,” Chemistry of Materials, vol. 16, no. 19, pp. 3623–3632, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Sivakumar, A. Gedanken, W. Zhong et al., “Sonochemical synthesis of nanocrystalline LaFeO3,” Journal of Materials Chemistry, vol. 14, no. 4, pp. 764–769, 2004. View at Google Scholar · View at Scopus
  15. B. R. Reddy, T. Sivasankar, M. Sivakumar, and V. S. Moholkar, “Physical facets of ultrasonic cavitational synthesis of zinc ferrite particles,” Ultrasonics Sonochemistry, vol. 17, no. 2, pp. 416–426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. H. A. Choudhury, A. Choudhary, M. Sivakumar, and V. S. Moholkar, “Mechanistic investigation of the sonochemical synthesis of zinc ferrite,” Ultrasonics Sonochemistry, vol. 20, pp. 294–302, 2013. View at Google Scholar
  17. K. S. Suslick, Ultrasound: Its Chemical, Physical and Biological Effects, VCH, New York, NY, USA, 1998.
  18. S. J. Doktycz and K. S. Suslick, “Interparticle collisions driven by ultrasound,” Science, vol. 247, no. 4946, pp. 1067–1069, 1990. View at Google Scholar · View at Scopus
  19. K. V. P. M. Shafi, A. Gedanken, R. Prozorov, and J. Balogh, “Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles,” Chemistry of Materials, vol. 10, no. 11, pp. 3445–3450, 1998. View at Google Scholar · View at Scopus
  20. A. Kotronarou, G. Mills, and M. R. Hoffmann, “Ultrasonic irradiation of p-nitrophenol in aqueous solution,” Journal of Physical Chemistry, vol. 95, no. 9, pp. 3630–3638, 1991. View at Google Scholar · View at Scopus
  21. T. Sivasankar, A. W. Paunikar, and V. S. Moholkar, “Mechanistic approach to enhancement of the yield of a sonochemical reaction,” AIChE Journal, vol. 53, no. 5, pp. 1132–1143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. S. Suslick, “Sonochemistry,” Science, vol. 247, no. 4949, pp. 1439–1445, 1990. View at Google Scholar · View at Scopus
  23. I. Hua, R. H. Höchemer, and M. R. Hoffmann, “Sonpchemical degradation of p-nitrophenol in a parallel-plate near-field acoustical processor,” Environmental Science and Technology, vol. 29, no. 11, pp. 2790–2796, 1995. View at Google Scholar · View at Scopus
  24. J. S. Krishnan, P. Dwivedi, and V. S. Moholkar, “Numerical investigation into the chemistry induced by hydrodynamic cavitation,” Industrial and Engineering Chemistry Research, vol. 45, no. 4, pp. 1493–1504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Chakma and V. S. Moholkar, “Numerical simulation and investigation of system parameters of sonochemical process,” Chinese Journal of Engineering, vol. 2013, Article ID 362682, 14 pages, 2013. View at Publisher · View at Google Scholar
  26. T. Sivasankar and V. S. Moholkar, “Mechanistic features of the sonochemical degradation of organic pollutants,” AIChE Journal, vol. 54, no. 8, pp. 2206–2219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Sivasankar and V. S. Moholkar, “Physical features of sonochemical degradation of nitroaromatic pollutants,” Chemosphere, vol. 72, no. 11, pp. 1795–1806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Sivasankar and V. S. Moholkar, “Mechanistic approach to intensification of sonochemical degradation of phenol,” Chemical Engineering Journal, vol. 149, no. 1–3, pp. 57–69, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Sivasankar and V. S. Moholkar, “Physical insight into the sonochemical degradation of 2,4-dichlorophenol,” Environmental Technology, vol. 31, no. 14, pp. 1483–1494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Sivasankar and V. S. Moholkar, “Physical insights into the sonochemical degradation of recalcitrant organic pollutants with cavitation bubble dynamics,” Ultrasonics Sonochemistry, vol. 16, no. 6, pp. 769–781, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Chakma and V. S. Moholkar, “Physical mechanism of sono-fenton process,” AIChE Journal, vol. 59, no. 11, pp. 4303–4313, 2013. View at Publisher · View at Google Scholar
  32. N. K. Morya, P. K. Iyer, and V. S. Moholkar, “A physical insight into sonochemical emulsion polymerization with cavitation bubble dynamics,” Polymer, vol. 49, no. 7, pp. 1910–1925, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Toegel, B. Gompf, R. Pecha, and D. Lohse, “Does water vapor prevent upscaling sonoluminescence?” Physical Review Letters, vol. 85, no. 15, pp. 3165–3168, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Goodarz Naseri, E. B. Saion, H. Abbastabar Ahangar, A. H. Shaari, and M. Hashim, “Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method,” Journal of Nanomaterials, vol. 2010, Article ID 907686, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. I. Kim, D. Kim, and C. S. Lee, “Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method,” Physica B, vol. 337, no. 1–4, pp. 42–51, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Pillai and D. O. Shah, “Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions,” Journal of Magnetism and Magnetic Materials, vol. 163, no. 1-2, pp. 243–248, 1996. View at Google Scholar · View at Scopus
  37. E. Manova, B. Kunev, D. Paneva et al., “Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4,” Chemistry of Materials, vol. 16, no. 26, pp. 5689–5696, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Dang, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara, “Characteristics of BaTiO3 particles sonochemically synthesized in aqueous solution,” Japanese Journal of Applied Physics, vol. 48, no. 9, Article ID 09KC02, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Yasui and K. Kato, “Numerical simulations of oriented aggregation of sonochemically synthesized BaTiO3 nanocrystals,” Proceedings of Meetings on Acoustics, vol. 15, Article ID 045002, pp. 1–7, 2012, 163rd Meeting Acoustical Society of America, Hong Kong. View at Google Scholar
  40. V. Musat, O. Potecasu, R. Belea, and P. Alexandru, “Magnetic materials from co-precipitated ferrite nanoparticles,” Materials Science and Engineering B, vol. 167, no. 2, pp. 85–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Köseoǧlu, F. Alan, M. Tan, R. Yilgin, and M. Öztürk, “Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles,” Ceramics International, vol. 38, no. 5, pp. 3625–3634, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Haneda and A. H. Morrish, “Noncollinear magnetic structure of CoFe2O4 small particles,” Journal of Applied Physics, vol. 63, no. 8, pp. 4258–4260, 1988. View at Publisher · View at Google Scholar · View at Scopus