Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2014, Article ID 310720, 13 pages
http://dx.doi.org/10.1155/2014/310720
Research Article

Fluence Rate in UV Photoreactor for Disinfection of Water: Isotropically Radiating Cylinder

Joint Stock Company “Svarog”, Stromynka Street 18, Moscow 107014, Russia

Received 28 February 2014; Accepted 29 August 2014; Published 10 November 2014

Academic Editor: Alírio Rodrigues

Copyright © 2014 Roman Ilinsky and Andrey Ulyanov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Masschelein and R. G. Rice, Ultraviolet Light in Water and Wastewater Sanitation, Lewis Publishers, 2002.
  2. C. Reichl, C. Buchner, G. Hirschmann, R. Sommer, and A. Cabaj, “Development of a simulation method to predict UV disinfection reactor performance and comparison to biodosimetric measurements,” in Proceedings of the Conference on Modelling Fluid Flow, Budapest University of Technology and Economics, pp. 591–598, Budapest, Hungary, 2006.
  3. J. E. Duran, F. Taghipour, and M. Mohseni, “Irradiance modeling in annular photoreactors using the finite-volume method,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 215, no. 1, pp. 81–89, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Buchner, Modelling of UV disinfection reactors by means of computational fluid dynamics [M.S. thesis], TU-Wien Atominstitut der Österreichischen Universitäten, Wien, Austria, 2006.
  5. D. Liu, Numerical simulation of UV disinfection reactors: impact of fluence rate distribution and turbulence modeling [Ph.D. thesis], Department of Civil, Construction, and Environmental Engineering, Faculty of North Carolina State University, 2004.
  6. J. R. Bolton, “Calculation of ultraviolet fluence rate distributions in an annular reactor: significance of refraction and reflection,” Water Research, vol. 34, no. 13, pp. 3315–3324, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. O. M. Alfano, R. L. Romero, and A. E. Cassano, “Radiation field modelling in photoreactors—I. Homogeneous media,” Chemical Engineering Science, vol. 41, no. 3, pp. 421–444, 1986. View at Publisher · View at Google Scholar · View at Scopus
  8. P. R. Harris and J. S. Dranoff, “A study of perfectly mixed photochemical reactors,” American Institute of Chemical Engineers Journal, vol. 11, no. 3, pp. 497–502, 1965. View at Google Scholar
  9. S. Jin, K. G. Linden, J. Ducoste, and D. Liu, “Impact of lamp shadowing and reflection on the fluence rate distribution in a multiple low-pressure UV lamp array,” Water Research, vol. 39, no. 12, pp. 2711–2721, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. G. E. Imoberdorf, F. Taghipour, and M. Mohseni, “Radiation field modeling of multi-lamp, homogeneous photoreactors,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 198, no. 2-3, pp. 169–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. E. R. de Bernardez, M. A. Claria, and A. E. Cassano, “Chemical industries. Chemical reaction and reactor engineering,” in Analysis and Design of Photoreactors, vol. 26, chapter 13, pp. 839–921, CRC Press, 1987. View at Google Scholar
  12. S. M. Jacob and J. S. Dranoff, “Radial scale-up of perfectly mixed photochemical reactors,” Chemical engineering progress symposium series, vol. 62, pp. 47–55, 1966. View at Google Scholar
  13. S. M. Jacob and J. S. Dranoff, “Light intensity profiles in a perfectly mixed photoreactor,” AIChE Journal, vol. 16, no. 3, pp. 359–363, 1970. View at Publisher · View at Google Scholar
  14. G. Kirchhoff, “Ueber das Verhältniss zwischen dem Emissionsverm ogen und dem Absorptionsvermögen der Körper fur Wärme und licht,” Annalen der Physik und Chemie, vol. 109, no. 4, pp. 275–301, 1860. View at Google Scholar
  15. R. Clausius, “Ueber die concentration von wärme- und Lichtstrahlen und die gränzen ihrer wirkung,” Annalen der Physik, vol. 197, no. 1, pp. 1–44, 1864. View at Publisher · View at Google Scholar
  16. R. Straubel, “Ueber einen allgemeinen Satz der geometrischen Optik und einige Anwendungen,” Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 4, no. 18, pp. 328–334, 1902. View at Google Scholar
  17. M. Labussière, “Sur l’existence geometrique d’un invariant general des faisceaux de rayons se refractant suivant la loi de descarte et ses applications a l’optique géométrique et au rayonnement,” Comptes Rendus Hebdomadaires des Séances, vol. 174, pp. 675–677, 1922. View at Google Scholar
  18. P. Bouguer, Traité d'optique sur la Gradation de la Lumière, De l'Imprimerie de H. L. Guerin & L. F. Delatour, Paris, France, 1760.
  19. P. L. Chebyshev, “Sur les quadratures,” in Oeuvres de P.L. Tchebychef, A. A. Markov and N. Sonin, Eds., vol. 2, pp. 165–180, Commissionnaires de l’Académie Impériale des Sciences, St. Pétersbourg, Russia, 1907. View at Google Scholar
  20. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Applied Optics, vol. 46, no. 18, pp. 3811–3820, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. Australian Water Quality Centre, “Determination of the efficiency of inactivation of MS2 phage, Poliovirus, Cryptosporidium parvum and a bacterial cocktail in adelaide drinking water—a detailed evaluation,” Tech. Rep., Australian Water Quality Centre, 2008. View at Google Scholar