Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2017 (2017), Article ID 4531686, 13 pages
https://doi.org/10.1155/2017/4531686
Research Article

Physicochemical Characterization of Representative Firewood Species Used for Cooking in Some Colombian Regions

Grupo de Manejo Eficiente de la Energía (Gimel), Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia

Correspondence should be addressed to Juan F. Pérez; oc.ude.aedu@bpnauj

Received 5 January 2017; Revised 4 March 2017; Accepted 12 March 2017; Published 18 April 2017

Academic Editor: Sankar Chakma

Copyright © 2017 Hernán E. Díez and Juan F. Pérez. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. F. Ramírez Quirama and A. L. Taborda Vergara, “Consumo de leña en fogones tradicionales en familias campesinas del oriente antioqueño,” Producción + Limpia, vol. 9, no. 1, pp. 99–114, 2014. View at Publisher · View at Google Scholar
  2. K. J. Wessels, B. F. N. Erasmus, M. Colgan et al., “Impacts of communal fuelwood extraction on LiDAR-estimated biomass patterns of savanna woodlands,” in Proceedings of the 32nd IEEE International Geoscience and Remote Sensing Symposium (IGARSS '12), pp. 1676–1679, IEEE, Munich, Germany, July 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. H. P. Komala and A. G. D. Prasad, “Utilization pattern of biomass energy and socioeconomic dimensions associated with Yelandur, Karnataka, India,” International Journal of Energy and Environmental Engineering, vol. 5, no. 2-3, pp. 1–7, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Mejía, “Implicaciones Ambientales Del Uso De Leña Como Combustible Doméstico En La Zona Rural De Usme,” 2011, http://www.bdigital.unal.edu.co/4125/1/905057.2011.pdf.
  5. L. Cardenas, J. Aristizabal, and R. Gomez, “Estufas eficientes de leña: Una parte de la solución a los problemas de la cocción doméstica en el medio rural colombiano,” Fundación Natura, Bogotá, Colombia, 2014, http://www.natura.org.co.
  6. P. S. Anoopa, D. Scaria, N. S. Nithya, and M. Prahitha, Energy Consumption Benchmark Studies on Parboiled Rice Cooking in Kerala, Energy Management Centre, 2005.
  7. B. P. Bhatt and J. M. S. Tomar, “Firewood properties of some Indian mountain tree and shrub species,” Biomass and Bioenergy, vol. 23, no. 4, pp. 257–260, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Valerio, “Environmental and health impacts of wood combustion to produce heat and power,” Epidemiologia e Prevenzione, vol. 36, no. 1, pp. 16–26, 2012. View at Google Scholar · View at Scopus
  9. World Health Organization, Household Air Pollution and Health, 2016.
  10. M. C. Rubio, J. L. Rodríguez Hermosa, and J. L. Álvarez-Sala Walther, “COPD in nonsmokers,” Archivos de Bronconeumologia, vol. 46, no. 4, pp. 16–21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. World Bank Group, Environmental Health Costs in Colombia: The Changes from 2002 to 2010, World Bank Group, 2014.
  12. World Bank Group, Colombia: Strengthening Environmental and Natural Resources Institutions. Study 2: Environmental Health in Colombia: An Economic Assessment of Health Effects, 2012.
  13. DANE, Distribución Poblacional en el Territorio y Relaciones Urbano-Regionales, DANE, Bogotá, Colombia, 2011.
  14. J. Jetter, Y. Zhao, K. R. Smith et al., “Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards,” Environmental Science and Technology, vol. 46, no. 19, pp. 10827–10834, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. M. P. Kshirsagar and V. R. Kalamkar, “A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design,” Renewable and Sustainable Energy Reviews, vol. 30, pp. 580–603, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Kataki and D. Konwer, “Fuelwood characteristics of some indigenous woody species of north-east India,” Biomass and Bioenergy, vol. 20, no. 1, pp. 17–23, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. M. B. Cardoso, A. H. Ladio, S. M. Dutrus, and M. Lozada, “Preference and calorific value of fuelwood species in rural populations in northwestern Patagonia,” Biomass and Bioenergy, vol. 81, pp. 514–520, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Ramos, P. M. de Medeiros, A. L. S. de Almeida, A. L. P. Feliciano, and U. P. de Albuquerque, “Can wood quality justify local preferences for firewood in an area of caatinga (dryland) vegetation?” Biomass and Bioenergy, vol. 32, no. 6, pp. 503–509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Moya and C. Tenorio, “Fuelwood characteristics and its relation with extractives and chemical properties of ten fast-growth species in Costa Rica,” Biomass and Bioenergy, vol. 56, pp. 14–21, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Naik, V. V. Goud, P. K. Rout, K. Jacobson, and A. K. Dalai, “Characterization of Canadian biomass for alternative renewable biofuel,” Renewable Energy, vol. 35, no. 8, pp. 1624–1631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Molino, F. Nanna, and A. Villone, “Characterization of biomasses in the southern Italy regions for their use in thermal processes,” Applied Energy, vol. 131, pp. 180–188, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. M.-C. Popescu, C.-M. Popescu, G. Lisa, and Y. Sakata, “Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods,” Journal of Molecular Structure, vol. 988, no. 1–3, pp. 65–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. T. D. P. Protásio, L. Bufalino, G. H. D. Tonoli, M. Guimarães Junior, P. F. Trugilho, and L. M. Mendes, “Brazilian lignocellulosic wastes for bioenergy production: characterization and comparison with fossil fuels,” BioResources, vol. 8, no. 1, pp. 1166–1185, 2013. View at Google Scholar · View at Scopus
  24. Ministerio de Ambiente y Desarrollo Sostenible, “Lineamientos para un programa nacional de estufas eficientes para cocción con leña,” 2014, http://www.si3ea.gov.co/Lena/2014/1A/1_Estufas_Eficientes_Coccion.pdf.
  25. Corpoamazonia, WWF, and Asociación Ampora, Plan de Ordenación y Manejo de la Cuenca Alta del río Putumayo, Corpoamazonia, WWF, and Asociación Ampora, Mocoa, Colombia, 2010.
  26. CORNARE, Criterios Huertos y Estufas Leñeras Limpias, Ambiental y Socialmente Sostenibles—HUELLAS, Antioquia, 2011.
  27. CVS and CMSC, Plan de Gestión Ambiental Regional—PGAR: 2008–2019, CVS and CMSC, Montería, Colombia, 2008.
  28. J. Aristizabal, “Improved cook stoves and fuelwood lots: an alternative of fuel self-supply for small farmers dependent of oak forests in the Colombia eastern cordillera,” Colombia Forestal, vol. 2, pp. 245–256, 2010. View at Google Scholar
  29. G. Shen, W. Lin, Y. Chen, D. Yue, Z. Liu, and C. Yang, “Factors influencing the adoption and sustainable use of clean fuels and cookstoves in China—a Chinese literature review,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 741–750, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Medic, M. Darr, A. Shah, B. Potter, and J. Zimmerman, “Effects of torrefaction process parameters on biomass feedstock upgrading,” Fuel, vol. 91, no. 1, pp. 147–154, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Cheng, Biomass to Renewable Energy Processes, CRC Press, 2009.
  32. M. Poletto, “Effect of extractive content on the thermal stability of two wood species from Brazil,” Maderas. Ciencia y Tecnología, vol. 18, pp. 435–442, 2016. View at Publisher · View at Google Scholar
  33. R. Barrera, J. Perez, and C. Salazar, “Carbones colombianos: clasificación y caracterización termoquímica para aplicaciones energéticas,” Ion, vol. 27, no. 2, 2015. View at Google Scholar
  34. Y. A. Lenis and J. F. Pérez, Estudio del Proceso de Gasificación de Biomasa en Lecho Fijo Equicorriente, University of Antioquia, 2013.
  35. D. Patiño, J. Porteiro, and J. Morán, Análisis experimental de combustión de biomasa en un quemador de lecho fijo [Ph.D. thesis], Universidad de Vigo, 2009.
  36. A. Gupta and D. S. Yan, “Particle size estimation and distributions,” in Mineral Processing Design and Operation, chapter 2, pp. 32–62, 2006. View at Google Scholar
  37. Y. A. Lenis, J. F. Pérez, and A. Melgar, “Fixed bed gasification of Jacaranda Copaia wood: effect of packing factor and oxygen enriched air,” Industrial Crops and Products, vol. 84, pp. 166–175, 2016. View at Publisher · View at Google Scholar · View at Scopus
  38. R. R. Devi, I. Ali, and T. K. Maji, “Chemical modification of rubber wood with styrene in combination with a crosslinker: effect on dimensional stability and strength property,” Bioresource Technology, vol. 88, no. 3, pp. 185–188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. ASTM Standard, “Standard test method for rubber property—durometer hardnes,” Tech. Rep. ASTM D2240–00, 2010. View at Google Scholar
  40. Unidad de Planeación Minera Energética (UPME), Integración de las Energías Renovables no Convencionales en Colombia, UPME, Bogotá, Colombia, 2015.
  41. Y. Çengel and M. Boles, Thermodynamics: An Engineering Approach, McGraw-Hill, New York, NY, USA, 8th edition, 2015.
  42. Y.-C. Ko and T.-H. Lin, “Emissions and efficiency of a domestic gas stove burning natural gases with various compositions,” Energy Conversion and Management, vol. 44, no. 19, pp. 3001–3014, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Yunus and A. Saxena, “Performance of LPG cooking stove using different design of burner heads,” International Journal of Engineering Research and Technology, vol. 2, no. 7, pp. 656–659, 2013. View at Google Scholar
  44. Center for Energy Studies, Efficiency Measurement of Biogas, Kerosene and LPG Stoves, Center for Energy Studies, Lalitpur, Nepal, 2001.
  45. W. Barragan, L. Ledesma, and S. Cajas, Sistemas Silvopastorales Para Mejorar la Producción de Leche y Disminuir el Estrés Calórico en la Región Caribe Colombiana, University of Antioquia, 2013.
  46. Cenicafe, “Cenicafe,” 2016.
  47. G. O. Mosiori, C. O. Onindo, P. Mugabi, S. B. Tumwebaze, S. Bagabo, and R. B. Johnson, “Characteristics of potential gasifier fuels in selected regions of the Lake Victoria Basin,” South African Journal of Science, vol. 111, no. 5-6, pp. 1–6, 2015. View at Publisher · View at Google Scholar · View at Scopus
  48. A. A. Tortosa Masiá, B. J. P. Buhre, R. P. Gupta, and T. F. Wall, “Characterising ash of biomass and waste,” Fuel Processing Technology, vol. 88, no. 11-12, pp. 1071–1081, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. R. García, C. Pizarro, A. G. Lavín, and J. L. Bueno, “Spanish biofuels heating value estimation. Part I: ultimate analysis data,” Fuel, vol. 117, pp. 1130–1138, 2014. View at Publisher · View at Google Scholar · View at Scopus
  50. J. F. Pérez, A. Melgar, and A. Horrillo, “Thermodynamic methodology to support the selection of feedstocks for decentralised downdraft gasification power plants,” International Journal of Sustainable Energy, pp. 1–19, 2016. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Prakash and K. N. Sheeba, “Prediction of pyrolysis and gasification characteristics of different biomass from their physico-chemical properties,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 38, no. 11, pp. 1530–1536, 2016. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Vaezi, M. Passandideh-Fard, M. Moghiman, and M. Charmchi, “On a methodology for selecting biomass materials for gasification purposes,” Fuel Processing Technology, vol. 98, pp. 74–81, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. W. B. Musinguzi, M. A. E. Okure, L. Wang, A. Sebbit, and T. Løvås, “Thermal characterization of Uganda's Acacia hockii, Combretum molle, Eucalyptus grandis and Terminalia glaucescens for gasification,” Biomass and Bioenergy, vol. 46, pp. 402–408, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. A. Lenis, A. F. Agudelo, and J. F. Pérez, “Analysis of statistical repeatability of a fixed bed downdraft biomass gasification facility,” Applied Thermal Engineering, vol. 51, no. 1-2, pp. 1006–1016, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. A. K. Sharma, “Experimental study on 75 kWth downdraft (biomass) gasifier system,” Renewable Energy, vol. 34, no. 7, pp. 1726–1733, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. P. McKendry, “Energy production from biomass (part 2): conversion technologies,” Bioresource Technology, vol. 83, no. 1, pp. 47–54, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. I. Janajreh and M. Al Shrah, “Numerical and experimental investigation of downdraft gasification of wood chips,” Energy Conversion and Management, vol. 65, pp. 783–792, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Tanger, J. L. Field, C. E. Jahn, M. W. DeFoort, and J. E. Leach, “Biomass for thermochemical conversion: targets and challenges,” Frontiers in Plant Science, vol. 4, article 218, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Vamvuka and E. Kakaras, “Ash properties and environmental impact of various biomass and coal fuels and their blends,” Fuel Processing Technology, vol. 92, no. 3, pp. 570–581, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Ruiz-Aquino, M. M. González-Peña, J. I. Valdez-Hernández, U. S. Revilla, and A. Romero-Manzanares, “Chemical characterization and fuel properties of wood and bark of two oaks from Oaxaca, Mexico,” Industrial Crops and Products, vol. 65, pp. 90–95, 2015. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Baptista, I. Miranda, T. Quilhó, J. Gominho, and H. Pereira, “Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material,” Industrial Crops and Products, vol. 50, pp. 166–175, 2013. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Brenes, Biomass and Bioenergy: New Research, Nova Publishers, Hauppauge, NY, USA, 2006.
  63. P. Fu, S. Hu, J. Xiang et al., “FTIR study of pyrolysis products evolving from typical agricultural residues,” Journal of Analytical and Applied Pyrolysis, vol. 88, no. 2, pp. 117–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Huang, Q. Zhou, J. Liu, B. Fei, and S. Sun, “Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy,” Journal of Molecular Structure, vol. 883-884, no. 1–3, pp. 160–166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. K. K. Pandey and A. J. Pitman, “FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi,” International Biodeterioration and Biodegradation, vol. 52, no. 3, pp. 151–160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Qian, A. Kumar, K. Patil et al., “Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char,” Energies, vol. 6, no. 8, pp. 3972–3986, 2013. View at Publisher · View at Google Scholar · View at Scopus
  67. P. McNamee, L. I. Darvell, J. M. Jones, and A. Williams, “The combustion characteristics of high-heating-rate chars from untreated and torrefied biomass fuels,” Biomass and Bioenergy, vol. 82, pp. 63–72, 2015. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Mészáros, E. Jakab, G. Várhegyi, P. Szepesváry, and B. Marosvölgyi, “Comparative study of the thermal behavior of wood and bark of young shoots obtained from an energy plantation,” Journal of Analytical and Applied Pyrolysis, vol. 72, no. 2, pp. 317–328, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Müller-Hagedorn, H. Bockhorn, L. Krebs, and U. Müller, “A comparative kinetic study on the pyrolysis of three different wood species,” Journal of Analytical and Applied Pyrolysis, vol. 68-69, pp. 231–249, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. M. G. Grønli, G. Várhegyi, and C. Di Blasi, “Thermogravimetric analysis and devolatilization kinetics of wood,” Industrial and Engineering Chemistry Research, vol. 41, no. 17, pp. 4201–4208, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Frau, F. Ferrara, A. Orsini, and A. Pettinau, “Characterization of several kinds of coal and biomass for pyrolysis and gasification,” Fuel, vol. 152, pp. 138–145, 2015. View at Publisher · View at Google Scholar · View at Scopus
  72. Z. Chen, M. Hu, X. Zhu et al., “Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis,” Bioresource Technology, vol. 192, pp. 441–450, 2015. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Menéndez and M. D. Curt, “Energy and socio-economic profile of a small rural community in the highlands of central Tanzania: a case study,” Energy for Sustainable Development, vol. 17, no. 3, pp. 201–209, 2013. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Smoot, R. Jackson, and J. Smith, “Toward combustion efficiency control criteria in open industrial flares,” Hawaii, USA, 2010.
  75. G. Elert, The Physics Hypertextbook, 2016, http://physics.info/density/.
  76. World Nuclear Association, Heat Values of Various Fuels, 2010.