Table of Contents Author Guidelines Submit a Manuscript
International Journal of Computer Games Technology
Volume 2013 (2013), Article ID 170914, 7 pages
http://dx.doi.org/10.1155/2013/170914
Research Article

Single- versus Multiobjective Optimization for Evolution of Neural Controllers in Ms. Pac-Man

Evolutionary Computing Laboratory, School of Engineering and Information Technology, Universiti Malaysia, Jalan (UMS), 88400 Kota Kinabalu, Sabah, Malaysia

Received 19 September 2012; Revised 14 December 2012; Accepted 4 January 2013

Academic Editor: Abdennour El Rhalibi

Copyright © 2013 Tse Guan Tan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Zheng and P. Wang, “Application of flow and transport optimization codes to groundwater pump-and-treat systems: Umatilla Army Depot, Oregon,” Tech. Rep., University of Alabama, Tuscaloosa, Ala, USA, 2001. View at Google Scholar
  2. C. A. C. Coello, “Evolutionary multi-objective optimization: a critical review,” in Evolutionary Optimization, R. Sarker, M. Mohammadian, and X. Yao, Eds., pp. 117–146, Kluwer Academic, Boston, Mass, USA, 2002. View at Google Scholar
  3. C. A. C. Coello, G. B. Lamont, and D. A. van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, Springer, New York, NY, USA, 2007.
  4. W. Q. Ying, Y. X. Li, C. Y. S. Phillip, Y. Wu, and F. H. Yu, “Geometric thermodynamicalselection for evolutionary multi-objective optimization,” Chinese Journal of Computers, vol. 33, no. 4, pp. 755–767, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms in multiobjective optimization,” Evolutionary Computation, vol. 3, pp. 1–16, 1995. View at Google Scholar
  6. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, New York, NY, USA, 2001.
  7. J. D. Knowles and D. W. Corne, “The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '99), pp. 98–105, Washington, DC, USA, July, 1999.
  8. E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the strength Pareto evolutionary algorithm,” Tech. Rep. 103, Computer Engineering and Network Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 2001. View at Google Scholar
  9. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. H. A. Abbass, R. Sarker, and C. Newton, “PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems,” in Proceedings of the IEEE Conference on Evolutionary Computation, pp. 971–978, May 2001. View at Scopus
  11. C. A. C. Coello, G. T. Pulido, and E. M. Montes, “Current and future research trends in evolutionary multiobjective optimization,” in Information Processing with Evolutionary Algorithms: From Industrial Applications to Academic Speculations, M. Grana, R. Duro, A. d'Anjou, and P. P. Wang, Eds., pp. 213–231, Springer, London, UK, 2005. View at Google Scholar
  12. C. A. C. Coello, “Recent trends in evolutionary multiobjective optimization,” in Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, A. Abraham, L. Jain, and R. Goldberg, Eds., pp. 7–32, Springer, London, UK, 2005. View at Google Scholar
  13. K. T. Chang, K. O. Chin, J. Teo, and A. M. Jilui-Kiring, “Evolving neural controllers using GA for warcraft 3-real time strategy game,” in Proceedings of the IEEE 6th International Conference on Bio-Inspired Computing: Theories and Applications, pp. 15–20, September 2011.
  14. K. T. Chang, J. H. Ong, J. Teo, and K. O. Chin, “The evolution of gamebots for 3D first person shooter (FPS),” in Proceedings of the IEEE 6th International Conference on Bio-Inspired Computing: Theories and Applications, pp. 21–26, September 2011.
  15. K. T. Chang, J. Teo, K. O. Chin, and B. L. Chua, “Automatic generation of real time strategy tournament units using differential evolution,” in Proceedings of the IEEE Conference on Sustainable Utilization and Development in Engineering and Technology, pp. 101–106, October 2011.
  16. C. H. Ng, S. H. Niew, K. O. Chin, and J. Teo, “Infinite mario bross AI using genetic algorithm,” in Proceedings of the IEEE Conference on Sustainable Utilization and Development in Engineering and Technology, pp. 85–89, October 2011.
  17. J. H. Ong, J. Teo, and K. O. Chin, “Interactive evolutionary programming for mobile games rules generation,” in Proceedings of the IEEE Conference on Sustainable Utilization and Development in Engineering and Technology, pp. 95–100, Semenyih, Malaysia, October 2011.
  18. A. Fitzgerald and C. B. Congdon, “RAMP: a rule-based agent for Ms. Pac-man,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '09), pp. 2646–2653, Trondheim, Norway, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Galván-López, J. M. Swafford, M. O'Neill, and A. Brabazon, “Evolving a Ms. Pacman controller using grammatical evolution,” in Proceedings of the Applications of Evolutionary Computation, EvoApplicatons: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC, pp. 161–170, Istanbul, Turkey, April 2010.
  20. D. Robles and S. M. Lucas, “A simple tree search method for playing Ms. Pac-man,” in Proceedings of the IEEE Symposium on Computational Intelligence and Games (CIG '09), pp. 249–255, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Szita and A. Lorincz, “Learning to play using low-complexity rule-based policies: illustrations through Ms. Pac-man,” Journal of Artificial Intelligence Research, vol. 30, pp. 659–684, 2007. View at Google Scholar · View at Scopus
  22. S. M. Lucas, “Evolving a neural network location evaluator to play Ms. Pac-man,” in Proceedings of the IEEE Symposium on Computational Intelligence and Games, pp. 203–210, Essex, UK, April 2005.
  23. J. D. Knowles and D. W. Corne, “Approximating the nondominated front using the Pareto Archived Evolution Strategy,” Evolutionary Computation, vol. 8, no. 2, pp. 149–172, 2000. View at Google Scholar · View at Scopus
  24. L. T. Bui and S. Alam, “An introduction to multi-objective optimization,” in Multi-Objective Optimization in Computational Intelligence: Theory and Practice, L. T. Bui and S. Alam, Eds., pp. 1–19, IGI Global, Hershey, Pa, USA, 2008. View at Google Scholar
  25. T. Wong, P. Bigras, and K. Khayati, “Causality assignment using multi-objective evolutionary algorithms,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 36–41, October 2002. View at Scopus
  26. D. Svozil, V. Kvasnička, and J. Pospíchal, “Tutorial: introduction to multi-layer feed-forward neural networks,” Chemometrics and Intelligent Laboratory Systems, vol. 39, no. 1, pp. 43–62, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. T. G. Tan, J. Teo, and P. Anthony, “Comparative investigation of non-linear activation functions in neural controllers for search-based game AI engineering,” Artificial Intelligence Review, 2011. View at Publisher · View at Google Scholar