Table of Contents
International Journal of Computational Mathematics
Volume 2014, Article ID 321585, 16 pages
http://dx.doi.org/10.1155/2014/321585
Research Article

On the Dynamics of Laguerre’s Iteration Method for Finding the th Roots of Unity

1Mathematics Department, Augsburg College, 2211 Riverside Avenue, Minneapolis, MN 55454, USA
2Augsburg College, 2211 Riverside Avenue, Minneapolis, MN 55454, USA

Received 8 May 2014; Accepted 21 August 2014; Published 26 November 2014

Academic Editor: Yaohang Li

Copyright © 2014 Pavel Bělík et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Laguerre, “Sur une méthode pour obtenir par approximation les racines d'une équation algébrique qui a toutes ses racines réelles,” Oeuvres de Laguerre, vol. 1, pp. 87–103, 1898. View at Google Scholar
  2. B. Parlett, “Laguerre's method applied to the matrix eigenvalue problem,” Mathematics of Computation, vol. 18, pp. 464–485, 1964. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. A. Ralston and P. Rabinowitz, A First Course in Numerical Analysis, Dover Publications, Mineola, NY, USA, 2nd edition, 2001. View at MathSciNet
  4. J. A. Ford, “A generalization of the Jenkins-Traub method,” Mathematics of Computation, vol. 31, no. 137, pp. 193–203, 1977. View at Google Scholar
  5. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes. The Art of Scientific Computing, Cambridge University Press, Cambridge, UK, 3rd edition, 2007. View at MathSciNet
  6. E. Bodewig, “Sur la méthode Laguerre pour l'approximation des racines de certaines équations algébriques et sur la critique d'Hermite,” Indagationes Mathematicae, vol. 49, pp. 570–580, 1946. View at Google Scholar
  7. T. L. Ray, Laguerre's method for finding complex roots [Ph.D. thesis], Stevens Institute of Technology, Hoboken, NJ, USA, 1966.
  8. J. H. Curry and S. L. Fiedler, “On the dynamics of Laguerre's iteration: Zn-1,” Physica D, vol. 30, no. 1-2, pp. 124–134, 1988. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  9. P. Henrici, Applied and Computational Complex Analysis, vol. 1, Wiley- Interscience, New York, NY, USA, 1974.
  10. W. Kahan, “Laguere's method and a circle which contains at least one zero of a polynomial,” SIAM Journal on Numerical Analysis, vol. 4, no. 3, pp. 474–482, 1967. View at Publisher · View at Google Scholar · View at MathSciNet
  11. V. Drakopoulos, “Are there any Julia sets for the Laguerre iteration function?” Computers & Mathematics with Applications, vol. 46, no. 8-9, pp. 1201–1210, 2003. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  12. Octave Community, “GNU Octave 3.8.1,” 2014, http://www.gnu.org/software/octave/.
  13. J. W. Eaton, D. Bateman, and S. Hauberg, Gnu Octave Version 3.0.1 Manual: A High-Level Interactive Language for Numerical Computations, CreateSpace Independent Publishing Platform, 2009, http://www.gnu.org/software/octave/doc/interpreter.
  14. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, 2nd edition, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  15. J. McLaughlin, “A note on Hausdorff measures of quasi-self-similar sets,” Proceedings of the American Mathematical Society, vol. 100, no. 1, pp. 183–186, 1987. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. J. Milnor, Dynamics in One Complex Variable, Princeton University Press, 3rd edition, 2006. View at MathSciNet