Table of Contents Author Guidelines Submit a Manuscript
International Journal of Dentistry
Volume 2011, Article ID 196721, 13 pages
http://dx.doi.org/10.1155/2011/196721
Research Article

Identification of Microbial and Proteomic Biomarkers in Early Childhood Caries

1Department of Periodontics, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA
2Department of Cariology and Comprehensive Care and Department of Periodontics and Implants, College of Dentistry, New York University, 345 E. 24th Street, New York, NY 10010, USA
3Computer Science Department, Intelligent Systems Program, Department of Biomedical Informatics, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15232, USA
4Human and Craniofacial Genetics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
5Department of General Dentistry, UNIMONTES, Montes Claros, MG 39401, Brazil
6Critical Care Medicine Department, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892, USA

Received 20 May 2011; Accepted 15 July 2011

Academic Editor: Alexandre Rezende Vieira

Copyright © 2011 Thomas C. Hart et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Diagnosis and management of dental caries throughout life, “National Institutes of Health Consensus Development Conference statement, March 26-28, 2001,” Journal of Dental Education, vol. 65, no. 10, pp. 1162–1168, 2001. View at Google Scholar
  2. R. H. Selwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” Lancet, vol. 369, no. 9555, pp. 51–59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. W. J. Loesche, “Role of Streptococcus mutans in human dental decay,” Microbiological Reviews, vol. 50, no. 4, pp. 353–380, 1986. View at Google Scholar · View at Scopus
  4. J. van Houte, “Role of micro-organisms in caries etiology,” Journal of Dental Research, vol. 73, no. 3, pp. 672–681, 1994. View at Google Scholar · View at Scopus
  5. H. F. Jenkinson and R. J. Lamont, “Oral microbial communities in sickness and in health,” Trends in Microbiology, vol. 13, no. 12, pp. 589–595, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. R. Becker, B. J. Paster, E. J. Leys et al., “Molecular analysis of bacterial species associated with childhood caries,” Journal of Clinical Microbiology, vol. 40, no. 3, pp. 1001–1009, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. P. M. Corby, J. Lyons-Weiler, W. A. Bretz et al., “Microbial risk indicators of early childhood caries,” Journal of Clinical Microbiology, vol. 43, no. 11, pp. 5753–5759, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Li, Y. Ge, D. Saxena, and P. W. Caufield, “Genetic profiling of the oral microbiota associated with severe early-childhood caries,” Journal of Clinical Microbiology, vol. 45, no. 1, pp. 81–87, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Lenander-Lumikari and V. Loimaranta, “Saliva and dental caries,” Advances in Dental Research, vol. 14, pp. 40–47, 2000. View at Google Scholar · View at Scopus
  10. A. Van Nieuw Amerongen, J. G. Bolscher, and E. C. Veerman, “Salivary proteins: protective and diagnostic value in cariology?” Caries Research, vol. 38, no. 3, pp. 247–253, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Vitorino, M. J. C. Lobo, J. R. Duarte, A. J. Ferrer-Correia, P. M. Domingues, and F. M. L. Amado, “The role of salivary peptides in dental caries,” Biomedical Chromatography, vol. 19, no. 3, pp. 214–222, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. I. D. Mandel, “The role of saliva in maintaining oral homeostasis,” The Journal of the American Dental Association, vol. 119, no. 2, pp. 298–304, 1989. View at Google Scholar · View at Scopus
  13. R. Schipper, A. Loof, J. de Groot, L. Harthoorn, E. Dransfield, and W. van Heerde, “SELDI-TOF-MS of saliva: methodology and pre-treatment effects,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 847, no. 1, pp. 45–53, 2007. View at Publisher · View at Google Scholar
  14. F. G. Oppenheim, E. Salih, W. L. Siqueira, W. Zhang, and E. J. Helmerhorst, “Salivary proteome and its genetic polymorphisms,” Annals of the New York Academy of Sciences, vol. 1098, pp. 22–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. F. M. L. Amado, R. M. P. Vitorino, P. M. D. N. Domingues, M. J. C. Lobo, and J. A. R. Duarte, “Analysis of the human saliva proteome,” Expert Review of Proteomics, vol. 2, no. 4, pp. 521–539, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Hu, Y. Li, J. Wang et al., “Human saliva proteome and transcriptome,” Journal of Dental Research, vol. 85, no. 12, pp. 1129–1133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. T. Wong, “Salivary diagnostics powered by nanotechnologies, proteomics and genomics,” Journal of the American Dental Association, vol. 137, no. 3, pp. 313–321, 2006. View at Google Scholar · View at Scopus
  18. C. F. Streckfus and L. R. Bigler, “Saliva as a diagnostic fluid,” Oral Diseases, vol. 8, no. 2, pp. 69–76, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Hu, J. A. Loo, and D. T. Wong, “Human body fluid proteome analysis,” Proteomics, vol. 6, no. 23, pp. 6326–6353, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. L. A. Tabak, “Point-of-care diagnostics enter the mouth,” Annals of the New York Academy of Sciences, vol. 1098, pp. 7–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. L. M. Kaste, R. H. Selwitz, R. J. Oldakowski, J. A. Brunelle, D. M. Winn, and L. J. Brown, “Coronal caries in the primary and permanent dentition of children and adolescents 1-17 years of age: United States, 1988–1991,” Journal of Dental Research, vol. 75, pp. 631–641, 1996. View at Google Scholar · View at Scopus
  22. M. Hauskrecht, R. Pelikan, D. E. Malehorn et al., “Feature selection for classification of SELDI-TOF-MS proteomic profiles,” Applied Bioinformatics, vol. 4, no. 4, pp. 227–246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Weiss and C. A. Kulikowski, Computer Systems That Learn : Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems, M. Kaufmann Publishers, San Mateo, Calif, USA, 1991.
  24. B. Efron and R. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall, New York, NY, USA, 1993.
  25. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, NY, USA, 1995.
  26. C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998. View at Google Scholar · View at Scopus
  27. B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge, Mass, USA, 2002.
  28. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. B. J. Paster, S. K. Boches, J. L. Galvin et al., “Bacterial diversity in human subgingival plaque,” Journal of Bacteriology, vol. 183, no. 12, pp. 3770–3783, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Ayad, B. C. Van Wuyckhuyse, K. Minaguchi et al., “The association of basic proline-rich peptides from human parotid gland secretions with caries experience,” Journal of Dental Research, vol. 79, no. 4, pp. 976–982, 2000. View at Google Scholar · View at Scopus
  31. C. F. Streckfus, L. R. Bigler, and M. Zwick, “The use of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry to detect putative breast cancer markers in saliva: a feasibility study,” Journal of Oral Pathology and Medicine, vol. 35, no. 5, pp. 292–300, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. O. H. Ryu, J. C. Atkinson, G. T. Hoehn, G. G. Illei, and T. C. Hart, “Identification of parotid salivary biomarkers in Sjogren's syndrome by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry and two-dimensional difference gel electrophoresis,” Rheumatology, vol. 45, no. 9, pp. 1077–1086, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Xie, N. L. Rhodus, R. J. Griffin, J. V. Carlis, and T. J. Griffin, “A catalogue of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass spectrometry,” Molecular and Cellular Proteomics, vol. 4, no. 11, pp. 1826–1830, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. W. H. Arnold, A. Dorow, S. Langenhorst, Z. Gintner, J. Bánóczy, and P. Gaengler, “Effect of fluoride toothpastes on enamel demineralization,” BMC Oral Health, vol. 6, article 8, 2006. View at Publisher · View at Google Scholar · View at Scopus