Table of Contents Author Guidelines Submit a Manuscript
International Journal of Dentistry
Volume 2012, Article ID 172935, 4 pages
http://dx.doi.org/10.1155/2012/172935
Clinical Study

Rapid Quantification of Bacteria in Infected Root Canals Using Fluorescence Reagents and a Membrane Filter: A Pilot Study on Its Clinical Application to the Evaluation of the Outcomes of Endodontic Treatment

1Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
2Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
3Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
4Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan

Received 15 February 2012; Accepted 29 March 2012

Academic Editor: Iris Slutzky-Goldberg

Copyright © 2012 Takuichi Sato et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Sato, K. Yamaki, N. Ishida et al., “Cultivable anaerobic microbiota of infected root canals,” International Journal of Dentistry, vol. 2012, pp. 609689–5, 2012, doi:10.1155/2012/609689. View at Google Scholar
  2. Y. Ito, T. Sato, K. Yamaki et al., “Microflora profiling of infected root canal before and after treatment using culture-independent methods,” Journal of Microbiology, vol. 50, no. 1, pp. 58–62, 2012. View at Google Scholar
  3. T. Sato, E. Hoshino, H. Uematsu, and T. Noda, “Predominant obligate anaerobes in necrotic pulps of human deciduous teeth,” Microbial Ecology in Health and Disease, vol. 6, no. 6, pp. 269–275, 1993. View at Google Scholar · View at Scopus
  4. N. Ando and E. Hoshino, “Predominant obligate anaerobes invading the deep layers of root canal dentin,” International Endodontic Journal, vol. 23, no. 1, pp. 20–27, 1990. View at Google Scholar · View at Scopus
  5. G. Sundqvist, Bacteriological Studies of Necrotic Pulps, Odontologisk Dissertations, Umeå University, Umeå, Sweden, 1976.
  6. N. Ando, E. Hoshino, M. Sato, K. Kota, and M. Iwaku, “Culture conditions for efficient recovery of bacteria from infected dental root canals,” Japanese Journal of Oral Biology, vol. 31, no. 5, pp. 603–608, 1989. View at Google Scholar · View at Scopus
  7. T. Kiryu, N. Ando, T. Hinata et al., “Evaluation of various tubed media for efficient bacterial examination in endodontics,” Niigata Dental Journal, vol. 22, no. 1, pp. 15–20, 1992. View at Google Scholar
  8. T. Shimakita, Y. Tashiro, A. Katsuya, M. Saito, and H. Matsuoka, “Rapid separation and counting of viable microbial cells in food by nonculture method with bioplorer, a focusing-free microscopic apparatus with a novel cell separation unit,” Journal of Food Protection, vol. 69, no. 1, pp. 170–176, 2006. View at Google Scholar · View at Scopus
  9. Y. Masakiyo, A. Yoshida, Y. Takahashi et al., “Rapid LED-based fluorescence microscopy distinguishes between live and dead bacteria in oral clinical samples,” Biomedical Research, vol. 31, no. 1, pp. 21–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. H. P. Horz, M. E. Vianna, B. P. F. A. Gomes, and G. Conrads, “Evaluation of universal probes and primer sets for assessing total bacterial load in clinical samples: general implications and practical use in endodontic antimicrobial therapy,” Journal of Clinical Microbiology, vol. 43, no. 10, pp. 5332–5337, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Sakamoto, J. F. Siqueira, I. N. Rôças, and Y. Benno, “Bacterial reduction and persistence after endodontic treatment procedures,” Oral Microbiology and Immunology, vol. 22, no. 1, pp. 19–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. E. Vianna, H. P. Horz, B. P. F. A. Gomes, and G. Conrads, “In vivo evaluation of microbial reduction after chemo-mechanical preparation of human root canals containing necrotic pulp tissue,” International Endodontic Journal, vol. 39, no. 6, pp. 484–492, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. L. B. Peters, A. J. Van Winkelhoff, J. F. Buijs, and P. R. Wesselink, “Effects of instrumentation, irrigation and dressing with calcium hydroxide on infection in pulpless teeth with periapical bone lesions,” International Endodontic Journal, vol. 35, no. 1, pp. 13–21, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. U. Sjögren, D. Figdor, S. Persson, and G. Sundqvist, “Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis,” International Endodontic Journal, vol. 30, no. 5, pp. 297–306, 1997. View at Google Scholar · View at Scopus
  15. D. Orstavik, K. Kerekes, and O. Molven, “Effects of extensive apical reaming and calcium hydroxide dressing on bacterial infection during treatment of apical periodontitis: a pilot study,” International Endodontic Journal, vol. 24, no. 1, pp. 1–7, 1991. View at Google Scholar · View at Scopus
  16. U. Sjögren, D. Figdor, L. Spångberg, and G. Sundqvist, “The antimicrobial effect of calcium hydroxide as a short-term intracanal dressing,” International Endodontic Journal, vol. 24, no. 3, pp. 119–125, 1991. View at Google Scholar · View at Scopus
  17. A. Byström and G. Sundqvist, “The antibacterial action of sodium hypochlorite and EDTA in 60 cases of endodontic therapy,” International Endodontic Journal, vol. 18, no. 1, pp. 35–40, 1985. View at Google Scholar · View at Scopus
  18. A. Byström and G. Sundqvist, “Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy,” Scandinavian Journal of Dental Research, vol. 89, no. 4, pp. 321–328, 1981. View at Google Scholar · View at Scopus
  19. J. F. Siqueira Jr. and I. N. Rôças, “Critical review in oral biology and medicine: diversity of endodontic microbiota revisited,” Journal of Dental Research, vol. 88, no. 11, pp. 969–981, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. Aas, B. J. Paster, L. N. Stokes, I. Olsen, and F. E. Dewhirst, “Defining the normal bacterial flora of the oral cavity,” Journal of Clinical Microbiology, vol. 43, no. 11, pp. 5721–5732, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. W. G. Wade, “Unculturable bacteria in oral biofilms,” in Dental Plaque Revisited: Oral Biofilms in Health and Disease, H. N. Newman and M. Wilson, Eds., BioLine, Cardiff, UK, 1999. View at Google Scholar
  22. L. Tronstad, Clinical Endodontics, Thieme, Stuttgart, Germany, 3rd edition, 2009.