Table of Contents Author Guidelines Submit a Manuscript
International Journal of Dentistry
Volume 2012 (2012), Article ID 348908, 8 pages
http://dx.doi.org/10.1155/2012/348908
Research Article

How Precise Is Dental Volumetric Tomography in the Prediction of Bone Density?

Department of Prosthodontics, Faculty of Dentistry, Istanbul University, 34093 Çapa Istanbul, Turkey

Received 16 February 2012; Accepted 9 April 2012

Academic Editor: Ozgur Pektas

Copyright © 2012 Hakan Bilhan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Roos, L. Sennerby, U. Lekholm, T. Jemt, K. Gröndahl, and T. Albrektsson, “A qualitative and quantitative method for evaluating implant success: a 5-year retrospective analysis of the Brånemark implant,” International Journal of Oral and Maxillofacial Implants, vol. 12, no. 4, pp. 504–514, 1997. View at Google Scholar · View at Scopus
  2. I. Naert, G. Koutsikakis, M. Quirynen, J. Duyck, D. van Steenberghe, and R. Jacobs, “Biologic outcome of implant-supported restorations in the treatment of partial edentulism part 2: a longitudinal radiographic evaluation,” Clinical Oral Implants Research, vol. 13, no. 4, pp. 390–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. I. Fanuscu and T. L. Chang, “Three-dimensional morphometric analysis of human cadaver bone: microstructural data from maxilla and mandible,” Clinical Oral Implants Research, vol. 15, pp. 213–218, 2004. View at Google Scholar
  4. T. Jemt and U. Lekholm, “Oral implant treatment in posterior partially edentulous jaws: a 5-year follow-up report,” International Journal of Oral and Maxillofacial Implants, vol. 8, no. 6, pp. 635–640, 1993. View at Google Scholar
  5. U. Lekholm and G. A. Zarb, “Patient selection and preparation,” in Tissue Integrated Prostheses: Osseointegration in Clinical Dentistry, P. I. Branemark, G. A. Zarb, and T. Albrektsson, Eds., pp. 199–209, Quintessence Publishing, Chicago, Ill, USA, 1985. View at Google Scholar
  6. C. E. Misch, “Density of bone: effect on treatment planning, surgical approach, and healing,” in Contemporary Implant Dentistry, C. E. Misch, Ed., pp. 469–485, Mosby-Year Book, St. Louis, Mo, USA, 1993. View at Google Scholar
  7. G. Dougherty, “Quantitative CT in the measurement of bone quantity and bone quality for assessing osteoporosis,” Medical Engineering and Physics, vol. 18, no. 7, pp. 557–568, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Apostol, V. Boudousq, O. Basset et al., “Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture,” Medical Physics, vol. 33, no. 9, pp. 3546–3556, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Stoppie, V. Pattijn, T. van Cleynenbreugel, M. Wevers, J. V. Sloten, and N. Ignace, “Structural and radiological parameters for the characterization of jawbone,” Clinical Oral Implants Research, vol. 17, no. 2, pp. 124–133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. E. Guerrero, R. Jacobs, M. Loubele, F. Schutyser, P. Suetens, and D. van Steenberghe, “State-of-the-art on cone beam CT imaging for preoperative planning of implant placement,” Clinical Oral Investigations, vol. 10, no. 1, pp. 1–7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Loubele, F. Maes, F. Schutyser, G. Marchal, R. Jacobs, and P. Suetens, “Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: a pilot study,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 102, no. 2, pp. 225–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. W. C. Scarfe, A. G. Farman, and P. Sukovic, “Clinical applications of cone-beam computed tomography in dental practice,” Journal of the Canadian Dental Association, vol. 72, no. 1, pp. 75–80, 2006. View at Google Scholar · View at Scopus
  13. A. Yamashina, K. Tanimoto, P. Sutthiprapaporn, and Y. Hayakawa, “The reliability of computed tomography (CT) values and dimensional measurements of the oropharyngeal region using cone beam CT: comparison with multidetector CT,” Dentomaxillofacial Radiology, vol. 37, no. 5, pp. 245–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. R. González-García and F. Monje, “The reliability of cone-beam computed tomography to assess bone density at dental implant recipientsites: a histomorphometric analysis by micro-CT,” Clinical Oral Implants Research. In press. View at Publisher · View at Google Scholar
  15. T. M. Keaveny and O. C. Yeh, “Architecture and trabecular bone—toward an improved understanding of the biomechanical effects of age, sex and osteoporosis,” Journal of Musculoskeletal Neuronal Interactions, vol. 2, no. 3, pp. 205–208, 2002. View at Google Scholar · View at Scopus
  16. G. H. van Lenthe, J. P. W. van den Bergh, A. R. M. M. Hermus, and R. Huiskes, “The prospects of estimating trabecular bone tissue properties from the combination of ultrasound, dual-energy X-ray absorptiometry, microcomputed tomography, and microfinite element analysis,” Journal of Bone and Mineral Research, vol. 16, no. 3, pp. 550–555, 2001. View at Google Scholar · View at Scopus
  17. J. A. Kanis, “Osteoporosis III: diagnosis of osteoporosis and assessment of fracture risk,” The Lancet, vol. 359, no. 9321, pp. 1929–1936, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Majumdar, H. K. Genant, S. Grampp et al., “Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging,” Journal of Bone and Mineral Research, vol. 12, no. 1, pp. 111–118, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. H. K. Genant, C. Gordon, Y. Jiang, T. F. Lang, T. M. Link, and S. Majumdar, “Advanced imaging of bone macro and micro structure,” Bone, vol. 25, no. 1, pp. 149–152, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Rüegsegger, B. Koller, and R. Müller, “A microtomographic system for the nondestructive evaluation of bone architecture,” Calcified Tissue International, vol. 58, no. 1, pp. 24–29, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Parfitt, “Bone histomorphometry: standardization of nomenclature, symbols and units,” Bone, vol. 9, no. 1, pp. 67–69, 1988. View at Google Scholar · View at Scopus
  22. D. Ulrich, B. van Rietbergen, A. Laib, and P. Rüegsegger, “The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone,” Bone, vol. 25, pp. 55–60, 1999. View at Google Scholar
  23. J. C. Teo, K. M. Si-Hoe, J. E. Keh, and S. H. Teoh, “Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone,” Clinical Biomechanics, vol. 21, pp. 235–244, 2006. View at Google Scholar
  24. L. A. Feldkamp, S. A. Goldstein, A. M. Parfitt, G. Jesion, and M. Kleerekoper, “The direct examination of three-dimensional bone architecture in vitro by computed tomography,” Journal of Bone and Mineral Research, vol. 4, pp. 3–11, 1989. View at Google Scholar
  25. J. L. Kuhn, S. A. Goldstein, L. A. Feldkamp, R. W. Goulet, and G. Jesion, “Evaluation of a microcomputed tomography system to study trabecular bone structure,” Journal of Orthopaedic Research, vol. 8, pp. 833–842, 1990. View at Google Scholar
  26. M. V. Swain and J. Xue, “State of the art of micro-CT applications in dental research,” International Journal of Oral Science, vol. 1, no. 4, pp. 177–188, 2009. View at Google Scholar · View at Scopus
  27. M. J. Paulus, S. S. Gleason, S. J. Kennel, P. R. Hunsicker, and D. K. Johnson, “High resolution X-ray computed tomography: an emerging tool for small animal cancer research,” Neoplasia, vol. 2, no. 1-2, pp. 62–70, 2000. View at Google Scholar · View at Scopus
  28. M. D. Bentley, M. C. Ortiz, E. L. Ritman, and J. Carlos Romero, “The use of microcomputed tomography to study microvasculature in small rodents,” American Journal of Physiology, vol. 282, no. 5, pp. R1267–R1279, 2002. View at Google Scholar · View at Scopus
  29. D. W. Holdsworth and M. M. Thornton, “Micro-CT in small animal and specimen imaging,” Trends in Biotechnology, vol. 20, no. 8, pp. S34–S39, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. R. E. Guldberg, A. S. P. Lin, R. Coleman, G. Robertson, and C. Duvall, “Microcomputed tomography imaging of skeletal development and growth,” Birth Defects Research Part C, vol. 72, no. 3, pp. 250–259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. O. Geckili, H. Bilhan, and T. Bilgin, “A 24-week prospective study comparing the stability of titanium dioxide grit-blasted dental implants with and without fluoride treatment,” The International Journal of Oral & Maxillofacial Implants, vol. 24, no. 4, pp. 684–688, 2009. View at Google Scholar · View at Scopus
  32. N. Meredith, “Assessment of implant stability as a prognostic determinant,” The International Journal of Prosthodontics, vol. 11, pp. 491–501, 1998. View at Google Scholar
  33. Y. S. Park, K. Y. Yi, I. S. Lee, and Y. C. Jung, “Correlation between microtomography and histomorphometry for assessment of implant osseointegration,” Clinical Oral Implants Research, vol. 16, no. 2, pp. 156–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. T. P. Harrigan, M. Jasty, R. W. Mann, and W. H. Harris, “Limitations of the continuum assumption in cancellous bone,” Journal of Biomechanics, vol. 21, no. 4, pp. 269–275, 1988. View at Google Scholar · View at Scopus
  35. J. Y. Rho, J. E. Zerwekh, and R. B. Ashman, “Examination of several techniques for predicting trabecular elastic modulus and ultimate strength in the human lumbar spine,” Clinical Biomechanics, vol. 9, no. 2, pp. 67–71, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Turkyilmaz, L. Sennerby, B. Yilmaz, B. Bilecenoglu, and E. N. Ozbek, “Influence of defect depth on resonance frequency analysis and insertion torque values for implants placed in fresh extraction sockets: a human cadaver study,” Clinical Implant Dentistry and Related Research, vol. 11, no. 1, pp. 52–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. W. J. Seong, U. K. Kim, J. Q. Swift, Y. C. Heo, J. S. Hodges, and C. C. Ko, “Elastic properties and apparent density of human edentulous maxilla and mandible,” International Journal of Oral and Maxillofacial Surgery, vol. 38, no. 10, pp. 1088–1093, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. A. L. Boskey, M. L. Cohen, and P. G. Bullough, “Hard tissue biochemistry: a comparison of fresh-frozen and formalin-fixed tissue samples,” Calcified Tissue International, vol. 34, no. 4, pp. 328–331, 1982. View at Google Scholar · View at Scopus
  39. M. E. Nimni, D. Cheung, B. Strates, M. Kodama, and K. Sheikh, “Chemically modified collagen: a natural biomaterial for tissue replacement,” Journal of Biomedical Materials Research, vol. 21, no. 6, pp. 741–771, 1987. View at Google Scholar · View at Scopus
  40. S. L. Nuccion, N. Y. Otsuka, and J. R. Davey, “The effect of freezing and intraosseous fluid on the stiffness behavior of canine trabecular bone,” Orthopedics, vol. 24, no. 4, pp. 375–380, 2001. View at Google Scholar · View at Scopus
  41. S. Wingerter, G. Calvert, M. Tucci, H. Benghuzzi, G. Russell, and A. Puckett, “Mechanical strength repercussions of various fixative storage methods on bone,” Biomedical Sciences Instrumentation, vol. 42, pp. 290–295, 2006. View at Google Scholar · View at Scopus
  42. A. Cömert, A. M. Kökat, M. Akkocaòlu, I. Tekdemir, K. Akça, and M. C. Çehreli, “Fresh-frozen vs. embalmed bone: is it possible to use formalin-fixed human bone for biomechanical experiments on implants?” Clinical Oral Implants Research, vol. 20, no. 5, pp. 521–525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. E. D. Sedlin and C. Hirsch, “Factors affecting the determination of the physical properties of femoral cortical bone,” Acta Orthopaedica Scandinavica, vol. 37, no. 1, pp. 29–48, 1966. View at Google Scholar · View at Scopus
  44. J. D. Currey, K. Brear, P. Zioupos, and G. C. Reilly, “Effect of formaldehyde fixation on some mechanical properties of bovine bone,” Biomaterials, vol. 16, no. 16, pp. 1267–1271, 1995. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Nazarian, B. J. Hermannsson, J. Müller, D. Zurakowski, and B. D. Snyder, “Effects of tissue preservation on murine bone mechanical properties,” Journal of Biomechanics, vol. 42, no. 1, pp. 82–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. G. E. Chacon, F. Dillard, N. Clelland, and R. Rashid, “Comparison of strains produced by titanium and poly D, L-lactide acid plating systems to in vitro forces,” Journal of Oral and Maxillofacial Surgery, vol. 63, no. 7, pp. 968–972, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Müller and P. Rüegsegger, “Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture,” Studies in Health Technology and Informatics, vol. 40, pp. 61–79, 1997. View at Google Scholar · View at Scopus
  48. E. Cendre, D. Mitton, J. P. Roux et al., “High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics,” Osteoporosis International, vol. 10, no. 5, pp. 353–360, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. B. Friberg, L. Sennerby, J. Roos, P. Johansson, C. G. Strid, and U. Lekholm, “Evaluation of bone density using cutting resistance measurements and microradiography: an in vitro study in pig ribs,” Clinical Oral Implants Research, vol. 6, no. 3, pp. 164–171, 1995. View at Google Scholar · View at Scopus
  50. P. Trisi and W. Rao, “Bone classification: clinical—histomorphometric comparison,” Clinical Oral Implants Research, vol. 10, no. 1, pp. 1–7, 1999. View at Google Scholar · View at Scopus
  51. M. R. Norton and C. Gamble, “Bone classification: an objective scale of bone density using the computerized tomography scan,” Clinical Oral Implants Research, vol. 12, no. 1, pp. 79–84, 2001. View at Google Scholar · View at Scopus
  52. B. L. Riggs, S. F. Hodgson, M. W. O'Fallon et al., “Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis,” The New England Journal of Medicine, vol. 322, no. 12, pp. 802–809, 1990. View at Google Scholar · View at Scopus
  53. M. Endo, T. Tsunoo, N. Nakamori, and K. Yoshida, “Effect of scattered radiation on image noise in cone beam CT,” Medical Physics, vol. 28, pp. 469–474, 2001. View at Google Scholar
  54. S. Yoo and F. F. Yin, “Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning,” International Journal of Radiation Oncology Biology Physics, vol. 66, no. 5, pp. 1553–1561, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Sukovic, “Cone beam computed tomography in craniofacial imaging,” Orthodontics and Craniofacial Research, vol. 6, supplement 1, pp. 31–36, 2003. View at Publisher · View at Google Scholar
  56. W. Becker, B. E. Backer, A. Alsuwyed, and S. Al-Mubarak, “Long-term evaluation of 282 implants in maxillary and mandibular molar positions: a prospective study,” Journal of Periodontology, vol. 70, no. 8, pp. 896–901, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. V. Arisan, N. Bölükbaşi, S. Ersanli, and T. Ozdemir, “Evaluation of 316 narrow diameter implants followed for 5–10 years: a clinical and radiographic retrospective study,” Clinical Oral Implants Research, vol. 21, pp. 296–307, 2010. View at Google Scholar