Abstract

This paper studies the effect of variable viscosity on the transient Couette flow of dusty fluid with heat transfer between parallel plates. The fluid is acted upon by a constant pressure gradient and an external uniform magnetic field is applied perpendicular to the plates. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below. The upper plate is moving with a uniform velocity while the lower is kept stationary. The governing nonlinear partial differential equations are solved numerically and some important effects for the variable viscosity and the uniform magnetic field on the transient flow and heat transfer of both the fluid and dust particles are indicated.