Table of Contents Author Guidelines Submit a Manuscript
Differential Equations and Nonlinear Mechanics
Volume 2009, Article ID 152698, 3 pages
http://dx.doi.org/10.1155/2009/152698
Research Article

Another Representation for the Maximal Lie Algebra of in Terms of Operators

1Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, Campus of EME College, Peshawar Road, Rawalpindi 46000, Pakistan
2Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Received 13 March 2009; Revised 30 July 2009; Accepted 20 August 2009

Academic Editor: Tasawar K. Hayat

Copyright © 2009 Tooba Feroze and Asghar Qadir. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We provide an alternate representation to the result that the Lie algebra of generators of the system of differential equations, , is isomorphic to the Lie algebra of the special linear group of order , over the real numbers, . In this paper, we provide an alternate representation of the symmetry algebra by simple relabelling of indices. This provides one more proof of the result that the symmetry algebra of is .

1. Introduction

The classification of all scalar second-order ordinary differential equations, according to the Lie algebra of generators they admit, is complete [1]; for example, the free particle equation admits eight Lie symmetries [2], which is the maximum number of symmetries admitted by any second-order differential equation defined on a domain in the plane [1]. This Lie algebra is isomorphic to [3]. The maximality of the Lie algebra of was proved by Lie, using a geometric argument [4]. The fact that the Lie algebra of the -dimensional vector equation is will be demonstrated here by an algebraic method of relabelling indices. This result had apparently been published earlier by Aminova in a relatively inaccessible journal [5, 6] Before her, Leach [7] showed that an -dimensional, uncoupled, undamped, and unforced linear system has the complete symmetry group , and Prince and Eliezer [8] studied that the full symmetry group of the time-dependent oscillator in -dimensions is of operators. The number of symmetries of the equation has also been discussed in [9].

2. The Algebra of

Ibragimov [10] lists symmetry generators of the -dimensional vector : where we have used the Einstein summation convention that repeated indices are summed over and rewritten so that they balance. These are twenty four generators in all.

As the Lie algebra is eight dimensional for the scalar equation and twenty four dimensional for the -dimensional equation, one may have supposed that the number of symmetry generators for the -dimensional equation would be sixteen. However, it turns out that the number of infinitesimal generators is fifteen. This equals the number for . Infact, for , the number of generators in (2.1) equals that for . We may, therefore, guess the following.

Theorem 2.1. The Lie algebra, for the second-order -dimensional vector equation, is

Proof. The generators of the Lie algebra are [11, 12] which satisfy the commutation relation where is the usual Kronecker delta. Further, setting gives the Lie algebra of .

It can be easily verified that the algebra for dependent variables is (2.1) with . Now define for and for Then the generators can be rewritten as where and . Now, further putting we only need to define . This may be defined by setting where . Then the generators given by (2.4) and (2.5) satisfy (2.3). The negative sign in (2.5) is introduced, so that the generators satisfy the required algebra. It is allowable to introduce the negative sign as will be a generator if is. Hence the maximal symmetry algebra of the second-order -dimensional vector differential equation is .

3. Remarks

This representation of the symmetry algebra , has been obtained by merely relabelling the symmetry generators, as such we feel that it is especially simple and elegant.

Acknowledgment

The authors would like to thank Dr. A. H. Kara for very useful comments and discussions on this work, during his visit to the Mathematics Department, Quaid-i-Azam University, Islamabad, Pakistan.

References

  1. F. M. Mahomed, A. H. Kara, and P. G. L. Leach, “Lie and noether counting theorems for one-dimensional systems,” Journal of Mathematical Analysis and Applications, vol. 178, no. 1, pp. 116–129, 1993. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. H. Stephani, Differential Equations: Their Solution Using Symmetries, Cambridge University Press, Cambridge, UK, 1990. View at MathSciNet
  3. A. H. Kara and F. M. Mahomed, “Relationship between symmetries and conservation laws,” International Journal of Theoretical Physics, vol. 39, no. 1, pp. 23–40, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. S. Lie, “Classification und Integration von gewöhnlichen Differentialgleichungen zwischenxy, die eine Gruppe von Transformationen gestatten,” Mathematische Annalen, vol. 32, no. 2, pp. 213–281, 1888. View at Publisher · View at Google Scholar · View at MathSciNet
  5. A. V. Aminova, “Automorphisms of geometric structures as symmetries of differential equations,” Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, no. 2, p. 3, 1994. View at Google Scholar · View at Zentralblatt MATH
  6. A. V. Aminova, N. Aminav, and N. S. Tensor, “Projective geometry of systems of differential equations: general conceptions,” Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, vol. 62, no. 1, pp. 65–86, 2000. View at Google Scholar · View at Zentralblatt MATH
  7. P. G. L. Leach, “Sl(3,R) and the repulsive oscillator,” Journal of Physics A, vol. 13, pp. 1991–2000, 1980. View at Publisher · View at Google Scholar
  8. G. E. Prince and C. J. Eliezer, “Symmetries of the time-dependent N-dimensional oscillator,” Journal of Physics A, vol. 13, no. 3, pp. 815–823, 1980. View at Publisher · View at Google Scholar · View at MathSciNet
  9. F. González-Gascón and A. González-López, “Symmetries of differential equations. IV,” Journal of Mathematical Physics, vol. 24, no. 8, pp. 2006–2021, 1983. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, vol. 4 of Wiley Series in Mathematical Methods in Practice, John Wiley & Sons, Chichester, UK, 1999. View at MathSciNet
  11. A. Qadir, “An interesting representation of lie algebras of linear groups,” International Journal of Theoretical Physics, vol. 14, pp. 74–101, 1976. View at Google Scholar · View at Zentralblatt MATH
  12. A. Qadir, , Ph.D. thesis, London University, London, UK, 1971.