Abstract

We consider multidimensional conservation laws with discontinuous flux, which are regularized with vanishing diffusion and dispersion terms and with smoothing of the flux discontinuities. We use the approach of 𝐻-measures to investigate the zero diffusion-dispersion-smoothing limit.

1. Introduction

We consider the convergence of smooth solutions 𝑒=π‘’πœ€(𝑑,π‘₯) with (𝑑,π‘₯)βˆˆπ‘+×𝐑𝑑 of the nonlinear partial differential equation

πœ•π‘‘π‘’+divπ‘₯π‘“πœš(𝑑,π‘₯,𝑒)=πœ€divπ‘₯𝑏(βˆ‡π‘’)+𝛿𝑑𝑗=1πœ•3π‘₯𝑗π‘₯𝑗π‘₯𝑗𝑒(1.1) as πœ€β†’0 and 𝛿=𝛿(πœ€),𝜚=𝜚(πœ€)β†’0. Here π‘“βˆˆπΆ(𝐑;𝐡𝑉(𝐑+𝑑×𝐑𝑑π‘₯)) is the Caratheodory flux vector such that

max|𝑒|≀𝑙||π‘“πœš||(𝑑,π‘₯,𝑒)βˆ’π‘“(𝑑,π‘₯,𝑒)⟢0,𝜚⟢0,in𝐿𝑝loc𝐑+×𝐑𝑑,(1.2) for 𝑝>2 and every 𝑙>0. The aim is to show convergence to a weak solution of the corresponding hyperbolic conservation law:

πœ•π‘‘π‘’+divπ‘₯𝑓(𝑑,π‘₯,𝑒)=0,𝑒=𝑒(𝑑,π‘₯),π‘₯βˆˆπ‘π‘‘,𝑑β‰₯0.(1.3) We refer to this problem as the zero diffusion-dispersion-smoothing limit.

In the case when the flux 𝑓 is at least Lipschitz continuous, it is well known that the Cauchy problem corresponding to (1.3) has a unique admissible entropy solution in the sense of KruΕΎhkov [1] (or measure valued solution in the sense of DiPerna [2]). The situation is more complicated when the flux is discontinuous and it has been the subject of intensive investigations in the recent years (see, e.g., [3] and references therein). The one-dimensional case of the problem is widely investigated using several approaches (numerical techniques [3, 4], compensated compactness [5, 6], and kinetic approach [7, 8]). In the multidimensional case there are only a few results concerning existence of a weak solution. In [9] existence is obtained by a two-dimensional variant of compensated compactness, while in [10] the approach of 𝐻-measures [11, 12] is used for the case of arbitrary space dimensions. Still, many open questions remain such as the uniqueness and stability of solutions.

A problem that has not yet been studied in the context of conservation laws with discontinuous flux, and which is the topic of the present paper, is that of zero diffusion-dispersion limits. When the flux is independent of the spatial and temporal positions, the study of zero diffusion-dispersion limits was initiated in [13] and further addressed in numerous works by LeFloch et al. (e.g., [14–17]). The compensated compactness method is the basic tool used in the one-dimensional situation for the so-called limiting case in which the diffusion and dispersion parameters are in an appropriate balance. On the other hand, when diffusion dominates dispersion, the notion of measure valued solutions [2, 18] is used. More recently, in [19] the limiting case has also been analyzed using the kinetic approach and velocity averaging [20].

The remaining part of this paper is organized as follows. In Section 2 we collect some basic a priori estimates for smooth solutions of (1.1). In Section 3 we look into the diffusion-dispersion-smoothing limit for multidimensional conservation laws with a flux vector which is discontinuous with respect to spatial variable. In doing so we rely on the a priori estimates from the previous section in combination with Panov's H-measures approach [10]. Finally, in Section 4 we restrict ourselves to the one-dimensional case for which we obtain slightly stronger results using the compensated compactness method.

2. A priori Inequalities

Assume that the flux 𝑓 in (1.1) is smooth in all variables. Consider a sequence (π‘’πœ€,𝛿)πœ€,𝛿 of solutions of

πœ•π‘‘π‘’+divπ‘₯𝑓(𝑑,π‘₯,𝑒)=πœ€divπ‘₯𝑏(βˆ‡π‘’)+𝛿𝑑𝑗=1πœ•3π‘₯𝑗π‘₯𝑗π‘₯𝑗𝑒,𝑒(π‘₯,0)=𝑒0(π‘₯),π‘₯βˆˆπ‘π‘‘.(2.1)

We assume that (π‘’πœ€,𝛿)πœ€,𝛿 has enough regularity so that all formal computations below are correct. So, following Schonbek [13], we assume that for every πœ€,𝛿>0 we have π‘’πœ€,π›ΏβˆˆπΏβˆž([0,𝑇];𝐻4(𝐑𝑑)).

Later on, we will assume that the initial data 𝑒0 depends on πœ€. In this section, we will determine a priori inequalities for the solutions of problem (2.1).

To simplify the notation we will write π‘’πœ€ instead of π‘’πœ€,𝛿.

We will need the following assumptions on the diffusion term 𝑏(πœ†)=(𝑏1(πœ†),…,𝑏𝑛(πœ†)).

(H1) For some positive constants 𝐢1,𝐢2 we have

𝐢1||πœ†||2β‰€πœ†β‹…π‘(πœ†)≀𝐢2||πœ†||2βˆ€πœ†βˆˆπ‘π‘‘.(2.2)

(H2) The gradient matrix 𝐷𝑏(πœ†) is a positive definite matrix, uniformly in πœ†βˆˆπ‘π‘‘, that is, for every πœ†,πœšβˆˆπ‘π‘‘, there exists a positive constant 𝐢3 such that we have

πœšπ‘‡π·π‘(πœ†)𝜚β‰₯𝐢3||𝜚||2.(2.3)

We use the following notation:

||𝐷2𝑒||2=𝑑𝑖,π‘˜=1||πœ•2π‘₯𝑖π‘₯π‘˜π‘’||2.(2.4) In the sequel, for a vector valued function 𝑔=(𝑔1,…,𝑔𝑑) defined on 𝐑+×𝐑𝑑×𝐑, we denote

||𝑔||2=𝑑𝑖=1||𝑔𝑖||2.(2.5) The partial derivative πœ•π‘₯𝑖 in the point (𝑑,π‘₯,𝑒), where 𝑒 possibly depends on (𝑑,π‘₯), is defined by the formula

πœ•π‘₯𝑖𝑔𝐷(𝑑,π‘₯,𝑒(𝑑,π‘₯))=π‘₯π‘–π‘”ξ€Έβˆ£(𝑑,π‘₯,πœ†)πœ†=𝑒(𝑑,π‘₯).(2.6) In particular, the total derivative 𝐷π‘₯𝑖 and the partial derivative πœ•π‘₯𝑖 are connected by the identity

𝐷π‘₯𝑖𝑔(𝑑,π‘₯,𝑒)=πœ•π‘₯𝑖𝑔(𝑑,π‘₯,𝑒)+πœ•π‘’π‘”(𝑑,π‘₯,𝑒)πœ•π‘₯𝑖𝑒.(2.7) Finally we use

divπ‘₯𝑔(𝑑,π‘₯,𝑒)=𝑑𝑖=1𝐷π‘₯𝑖𝑔𝑖𝑔(𝑑,π‘₯,𝑒),𝑔=1,…,𝑔𝑑,Ξ”π‘₯π‘ž(𝑑,π‘₯,𝑒)=𝑑𝑖=1𝐷2π‘₯𝑖π‘₯π‘–π‘ž(𝑑,π‘₯,𝑒),π‘žβˆˆπΆ2𝐑+×𝐑𝑑.×𝐑(2.8)

With the previous conventions, we introduce the following assumption on the flux vector 𝑓.

(H3) The growth of the velocity variable 𝑒 and the spatial derivative of the flux 𝑓 are such that for some 𝐢,𝛼>0, 𝑝β‰₯1, and every 𝑙>0, we have

max||πœ†||<𝑙||𝑓𝑖||(𝑑,π‘₯,πœ†)βˆˆπΏπ‘ξ€·π‘+×𝐑𝑑,𝑖=1,…,𝑑,𝑑𝑖=1||πœ•π‘’π‘“π‘–||(𝑑,π‘₯,𝑒)≀𝐢,𝑑𝑖,𝑗=1||πœ•π‘₯𝑖𝑓𝑗||≀(𝑑,π‘₯,𝑒)πœ‡(𝑑,π‘₯)1+|𝑒|1+𝛼,(2.9) where πœ‡βˆˆβ„³(𝐑+×𝐑𝑑) is a bounded measure (and, accordingly, the above inequality is understood in the sense of measures).

Now, we can prove the following theorem.

Theorem 2.1. Suppose that the flux function 𝑓=𝑓(𝑑,π‘₯,𝑒) satisfies (H3) and that it is Lipschitz continuous on 𝐑+×𝐑𝑑×𝐑. Assume also that initial data 𝑒0 belongs to 𝐿2(𝐑𝑑). Under conditions (H1)-(H2) the sequence of solutions (π‘’πœ€)πœ€>0 of (2.1) for every π‘‘βˆˆ[0,𝑇] satisfies the following inequalities: ξ€œπ‘π‘‘||π‘’πœ€(||𝑑,π‘₯)2ξ€œπ‘‘π‘₯+πœ€π‘‘0ξ€œπ‘π‘‘||βˆ‡π‘’πœ€ξ€·π‘‘ξ…žξ€Έ||,π‘₯2𝑑π‘₯π‘‘π‘‘ξ…žβ‰€πΆ4ξƒ©ξ€œπ‘π‘‘||𝑒0||(π‘₯)2ξ€œπ‘‘π‘₯βˆ’π‘‘0ξ€œπ‘π‘‘ξ€œπ‘’πœ€ξ€·π‘‘β€²ξ€Έ0,π‘₯divπ‘₯π‘“ξ€·π‘‘ξ…žξ€Έ,π‘₯,𝑣𝑑𝑣𝑑π‘₯π‘‘π‘‘ξ…žξƒͺ,πœ€(2.10)2ξ€œπ‘π‘‘||||βˆ‡π‘’πœ€(𝑑,π‘₯)|2𝑑π‘₯+πœ€3ξ€œπ‘‘0ξ€œπ‘π‘‘||||𝐷2π‘’πœ€ξ€·π‘‘ξ…žξ€Έ|,π‘₯2𝑑π‘₯π‘‘π‘‘ξ…žβ‰€πΆ5ξƒ©πœ€2ξ€œπ‘π‘‘||βˆ‡π‘’0||(π‘₯)2ξ€œπ‘‘π‘₯+πœ€π‘‘0ξ€œπ‘π‘‘π‘‘ξ“π‘˜=1||πœ•π‘₯π‘˜π‘“ξ€·π‘‘ξ…ž,π‘₯,π‘’πœ€ξ€·π‘‘ξ…ž||,π‘₯ξ€Έξ€Έ2𝑑π‘₯π‘‘π‘‘ξ…ž+β€–β€–πœ•π‘’π‘“β€–β€–2𝐿∞(𝐑+×𝐑𝑑×𝐑)ξƒͺ,(2.11) for some constants 𝐢4 and 𝐢5.

Proof. We follow the procedure from [19]. Given a smooth function πœ‚=πœ‚(𝑒), π‘’βˆˆπ‘, we define π‘žπ‘–ξ€œ(𝑑,π‘₯,𝑒)=𝑒0πœ‚ξ…ž(𝑣)πœ•π‘£π‘“π‘–(𝑑,π‘₯,𝑣)𝑑𝑣,𝑖=1,…,𝑑.(2.12) If we multiply (2.1) by πœ‚ξ…ž(𝑒), it becomes πœ•π‘‘πœ‚ξ€·π‘’πœ€ξ€Έ+𝑑𝑖=1πœ•π‘₯π‘–π‘žπ‘–ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έβˆ’π‘‘ξ“π‘–=1ξ€œπ‘’πœ€0πœ•2π‘₯𝑖𝑣𝑓𝑖(𝑑,π‘₯,𝑣)πœ‚ξ…ž(𝑣)𝑑𝑣+𝑑𝑖=1πœ‚ξ…žξ€·π‘’πœ€ξ€Έπœ•π‘₯𝑖𝑓𝑖𝑑,π‘₯,π‘’πœ€ξ€Έ=πœ€π‘‘ξ“π‘–=1πœ•π‘₯π‘–ξ€·πœ‚ξ…žξ€·π‘’πœ€ξ€Έπ‘π‘–ξ€·βˆ‡π‘’πœ€ξ€Έξ€Έβˆ’πœ€πœ‚ξ…žξ…žξ€·π‘’πœ€ξ€Έπ‘‘ξ“π‘–=1π‘π‘–ξ€·βˆ‡π‘’πœ€ξ€Έπœ•π‘₯π‘–π‘’πœ€+𝛿𝑑𝑖=1πœ•π‘₯π‘–ξ€·πœ‚ξ…žξ€·π‘’πœ€ξ€Έπœ•2π‘₯𝑖π‘₯π‘–π‘’πœ€ξ€Έβˆ’π›Ώ2πœ‚ξ…žξ…žξ€·π‘’πœ€ξ€Έπ‘‘ξ“π‘–=1πœ•π‘₯π‘–ξ€·πœ•π‘₯π‘–π‘’πœ€ξ€Έ2.(2.13) Choosing here πœ‚(𝑒)=𝑒2/2 and integrating over [0,𝑑)×𝐑𝑑, we get ξ€œπ‘π‘‘||π‘’πœ€(||𝑑,π‘₯)2ξ€œπ‘‘π‘₯+πœ€π‘‘0ξ€œπ‘π‘‘βˆ‡π‘’πœ€ξ€·π‘‘ξ…žξ€Έξ€·,π‘₯β‹…π‘βˆ‡π‘’πœ€ξ€·π‘‘ξ…ž,π‘₯𝑑π‘₯π‘‘π‘‘ξ…ž=ξ€œπ‘π‘‘||𝑒0||(π‘₯)2𝑑π‘₯+𝑑𝑗=1ξ€œπ‘‘0ξ€œπ‘π‘‘ξ€œπ‘’πœ€ξ€·π‘‘β€²ξ€Έ0,π‘₯𝑣𝐷2π‘₯π‘—π‘£π‘“π‘—ξ€·π‘‘ξ…žξ€Έ,π‘₯,𝑣𝑑𝑣𝑑π‘₯π‘‘π‘‘ξ…žβˆ’π‘‘ξ“π‘–=1ξ€œπ‘‘0ξ€œπ‘π‘‘π‘’πœ€ξ€·π‘‘ξ…žξ€Έπœ•,π‘₯π‘₯π‘–π‘“π‘–ξ€·π‘‘ξ…ž,π‘₯,π‘’πœ€ξ€·π‘‘ξ…ž,π‘₯𝑑π‘₯π‘‘π‘‘ξ…ž=ξ€œπ‘π‘‘||𝑒0||(π‘₯)2𝑑π‘₯βˆ’π‘‘ξ“π‘–=1ξ€œπ‘‘0ξ€œπ‘π‘‘ξ€œπ‘’πœ€ξ€·π‘‘β€²ξ€Έ0,π‘₯πœ•π‘₯π‘–π‘“π‘–ξ€·π‘‘ξ…žξ€Έ,π‘₯,𝑣𝑑𝑣𝑑π‘₯π‘‘π‘‘ξ…ž,(2.14) where the second equality sign is justified by the following partial integration: ξ€œπ‘‘0ξ€œπ‘π‘‘ξ€œπ‘’πœ€0𝑣𝐷2π‘₯π‘—π‘£π‘“π‘—ξ€·π‘‘ξ…žξ€Έ,π‘₯,𝑣𝑑𝑣𝑑π‘₯π‘‘π‘‘ξ…ž=ξ€œπ‘‘0ξ€œπ‘π‘‘π‘’πœ€πœ•π‘₯π‘–π‘“π‘–ξ€·π‘‘ξ…ž,π‘₯,π‘’πœ€ξ€Έπ‘‘π‘₯π‘‘π‘‘ξ…žβˆ’ξ€œπ‘‘0ξ€œπ‘π‘‘ξ€œπ‘’πœ€0πœ•π‘₯π‘–π‘“π‘–ξ€·π‘‘ξ…žξ€Έ,π‘₯,𝑣𝑑𝑣𝑑π‘₯π‘‘π‘‘ξ…ž.(2.15)
Now inequality (2.10) follows from (2.14), using (H1).
As for inequality (2.11), we start by using (2.14), namely, ξ€œπ‘π‘‘||π‘’πœ€(||𝑑,π‘₯)2ξ€œπ‘‘π‘₯+πœ€π‘‘0ξ€œπ‘π‘‘βˆ‡π‘’πœ€ξ€·π‘‘ξ…žξ€Έξ€·,π‘₯β‹…π‘βˆ‡π‘’πœ€ξ€·π‘‘ξ…ž,π‘₯𝑑π‘₯π‘‘π‘‘ξ…ž=ξ€œπ‘π‘‘||𝑒0||(π‘₯)2𝑑π‘₯βˆ’π‘‘ξ“π‘–=1ξ€œπ‘‘0ξ€œπ‘π‘‘ξ€œπ‘’πœ€ξ€·π‘‘β€²ξ€Έ0,π‘₯πœ•π‘₯π‘–π‘“π‘–ξ€·π‘‘ξ…žξ€Έ,π‘₯,𝑣𝑑𝑣𝑑π‘₯π‘‘π‘‘ξ…žβ‰€ξ€œπ‘π‘‘||𝑒0||(π‘₯)2𝑑π‘₯+𝑑𝑖=1ξ€œπ‘‘0ξ€œπ‘π‘‘ξ€œπ‘’πœ€ξ€·π‘‘β€²ξ€Έ0,π‘₯||πœ•π‘₯π‘–π‘“π‘–ξ€·π‘‘ξ…žξ€Έ||,π‘₯,𝑣𝑑𝑣𝑑π‘₯π‘‘π‘‘ξ…žβ‰€ξ€œπ‘π‘‘||𝑒0||(π‘₯)2ξ€œπ‘‘π‘₯+𝑑0ξ€œπ‘π‘‘ξ€œπ‘πœ‡ξ€·π‘‘ξ…žξ€Έ,π‘₯1+|𝑣|1+𝛼𝑑𝑣𝑑π‘₯π‘‘π‘‘ξ…žβ‰€ξ€œπ‘π‘‘||𝑒0||(π‘₯)2ξ€œπ‘‘π‘₯+𝐢𝑑0ξ€œπ‘π‘‘πœ‡ξ€·π‘‘ξ…žξ€Έ,π‘₯𝑑π‘₯π‘‘π‘‘ξ…ž,(2.16) where ∫𝐢=𝐑(𝑑𝑣/(1+|𝑣|1+𝛼)).
From here, using (H3), we conclude in particular that πœ€ξ€œπ‘‘0ξ€œπ‘π‘‘||βˆ‡π‘’πœ€ξ€·π‘‘ξ…žξ€Έ||,π‘₯2𝑑π‘₯π‘‘π‘‘ξ…žβ‰€πΆ11,(2.17) for some constant 𝐢11 independent of πœ€.
Next, we differentiate (2.1) with respect to π‘₯π‘˜ and multiply the expression by πœ•π‘₯π‘˜π‘’. Integrating over 𝐑𝑑, using integration by parts and then summing over π‘˜=1,…,𝑑, we get: 12ξ€œπ‘π‘‘πœ•π‘‘||βˆ‡π‘’πœ€||2𝑑π‘₯βˆ’π‘‘ξ“π‘˜=1ξ€œπ‘π‘‘ξ€·βˆ‡πœ•π‘₯π‘˜π‘’πœ€ξ€Έβ‹…ξ€·πœ•π‘₯π‘˜π‘“π‘˜ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ+πœ•π‘’π‘“π‘˜πœ•π‘₯π‘˜π‘’πœ€ξ€Έπ‘‘π‘₯=βˆ’πœ€π‘‘ξ“π‘˜=1ξ€œπ‘π‘‘ξ€·βˆ‡πœ•π‘₯π‘˜π‘’πœ€ξ€Έπ‘‡ξ€·π·π‘βˆ‡π‘’πœ€ξ€Έξ€·βˆ‡πœ•π‘₯π‘˜π‘’πœ€ξ€Έπ‘‘π‘₯.(2.18) Integrating this over [0,𝑑] and using the Cauchy-Schwarz inequality and condition (H2), we find 12ξ€œπ‘π‘‘||βˆ‡π‘’πœ€||(𝑑,β‹…)2𝑑π‘₯+πœ€πΆ3π‘‘ξ“π‘˜=1ξ€œπ‘‘0ξ€œπ‘π‘‘||βˆ‡πœ•π‘₯π‘˜π‘’πœ€||2𝑑π‘₯π‘‘π‘‘ξ…žβ‰€12ξ€œπ‘π‘‘||βˆ‡π‘’0||2𝑑π‘₯+π‘‘ξ“π‘˜=1β€–β€–βˆ‡ξ€·πœ•π‘₯π‘˜π‘’πœ€ξ€Έβ€–β€–πΏ2𝐑+Γ—π‘π‘‘ξ€Έβ€–β€–πœ•π‘₯π‘˜π‘“π‘˜ξ€·β‹…,β‹…,π‘’πœ€ξ€Έ+πœ•π‘’π‘“π‘˜πœ•π‘₯π‘˜π‘’πœ€β€–β€–πΏ2𝐑+×𝐑𝑑,(2.19) where 𝐢3 is independent of πœ€. Then, using Young's inequality (the constant 𝐢3 is the same as previously mentioned) πΆπ‘Žπ‘β‰€3πœ€2π‘Ž2+12𝐢3πœ€π‘2,π‘Ž,π‘βˆˆπ‘,(2.20) we obtain 12ξ€œπ‘π‘‘||βˆ‡π‘’πœ€||(𝑑,β‹…)2𝑑π‘₯+πœ€πΆ3π‘‘ξ“π‘˜=1ξ€œπ‘‘0ξ€œπ‘π‘‘||βˆ‡πœ•π‘₯π‘˜π‘’πœ€||2𝑑π‘₯π‘‘π‘‘ξ…žβ‰€12ξ€œπ‘π‘‘||βˆ‡π‘’0||2𝑑π‘₯+𝐢3πœ€2π‘‘ξ“π‘˜=1ξ€œπ‘‘0ξ€œπ‘π‘‘||βˆ‡πœ•π‘₯π‘˜π‘’πœ€||2𝑑π‘₯π‘‘π‘‘ξ…ž+12𝐢3πœ€ξ€œπ‘‘0ξ€œπ‘π‘‘π‘‘ξ“π‘˜=1||πœ•π‘₯π‘˜π‘“π‘˜ξ€·π‘‘ξ…ž,π‘₯,π‘’πœ€ξ€Έ+πœ•π‘’π‘“π‘˜πœ•π‘₯π‘˜π‘’πœ€||2𝑑π‘₯π‘‘π‘‘ξ…ž.(2.21) Multiplying this by πœ€2, using (π‘Ž+𝑏)2≀2π‘Ž2+2𝑏2, and applying (2.17), we conclude πœ€22ξ€œπ‘π‘‘||βˆ‡π‘’πœ€(||𝑑,β‹…)2𝑑π‘₯+𝐢3πœ€32ξ€œπ‘π‘‘ξ€œπ‘‘0||𝐷2π‘’πœ€||2𝑑π‘₯π‘‘π‘‘ξ…žβ‰€πœ€22ξ€œπ‘π‘‘||βˆ‡π‘’0||2𝑑π‘₯π‘‘π‘‘ξ…ž+πœ€πΆ3ξ€œπ‘‘0ξ€œπ‘π‘‘π‘‘ξ“π‘˜=1||πœ•π‘₯π‘˜π‘“π‘˜ξ€·π‘‘ξ…ž,π‘₯,π‘’πœ€ξ€·π‘‘ξ…ž||,π‘₯ξ€Έξ€Έ2𝑑π‘₯π‘‘π‘‘ξ…ž+𝐢11𝐢3β€–β€–πœ•π‘’π‘“π‘˜β€–β€–2πΏβˆžξ€·π‘+×𝐑𝑑×𝐑.(2.22) This inequality is actually inequality (2.11) when we take 𝐢5=2max{1,1/𝐢3,𝐢11/𝐢3}/min{1,𝐢3}.

3. The Multidimensional Case

Consider the following initial-value problem. Find 𝑒=𝑒(𝑑,π‘₯) such that

πœ•π‘‘π‘’+divπ‘₯𝑒𝑓(𝑑,π‘₯,𝑒)=0,(π‘₯,0)=𝑒0(π‘₯),π‘₯βˆˆπ‘π‘‘,(3.1) where 𝑒0∈𝐿2(𝐑𝑑) is a given initial data.

For the flux 𝑓=(𝑓1,…,𝑓𝑑) we need the following assumption, denoted (H4).

(H4a) For the flux 𝑓=𝑓(𝑑,π‘₯,𝑒), (𝑑,π‘₯,𝑒)βˆˆπ‘+×𝐑𝑑×𝐑, we assume that π‘“βˆˆπΆ(𝐑;𝐡𝑉(𝐑+×𝐑𝑑)) and that for every π‘™βˆˆπ‘+ we have maxπ‘’βˆˆ[βˆ’π‘™,𝑙]|𝑓(𝑑,π‘₯,𝑒)|βˆˆπΏπ‘(𝐑+×𝐑𝑑), 𝑝>2 .

(H4b) There exists a sequence π‘“πœš=(𝑓1𝜚,…,π‘“π‘‘πœš), 𝜚∈(0,1), such that π‘“πœš=π‘“πœš(𝑑,π‘₯,𝑒)∈𝐢1(𝐑+×𝐑𝑑×𝐑), satisfying for some 𝑝>2 and every π‘™βˆˆπ‘+:

maxπ‘§βˆˆ[βˆ’π‘™,𝑙]||π‘“πœš||⟢(β‹…,β‹…,𝑧)βˆ’π‘“(β‹…,β‹…,𝑧)πœšβ†’00in𝐿𝑝𝐑+×𝐑𝑑=0,(3.2a)𝑑𝑖=1ξ€œπ‘+×𝐑𝑑||πœ•π‘₯π‘–π‘“π‘–πœš(||𝐢𝑑,π‘₯,𝑒)𝑑π‘₯𝑑𝑑≀11+|𝑒|1+π›Όπœš,(3.2b)𝑑𝑖=1,π‘˜ξ€œπ‘+×𝐑𝑑||πœ•π‘₯π‘˜π‘“π‘–πœš||(𝑑,π‘₯,𝑒)2𝐢𝑑π‘₯𝑑𝑑≀2,(3.2c)𝑑𝑖=1||πœ•π‘’π‘“π‘–πœš||≀𝐢(𝑑,π‘₯,𝑒)𝛽(𝜚),(3.2d)𝑑𝑖=1ξ€œπ‘+×𝐑𝑑||πœ•2π‘₯π‘–π‘’π‘“π‘–πœš||𝐢(𝑑,π‘₯,𝑒)𝑑π‘₯𝑑𝑑≀31+|𝑒|1+𝛼,(3.2e) where 𝐢𝑖, 𝑖=1,2,3, and 𝐢 are constants, while the function π›½βˆΆπ‘β†’π‘ is such that limπœŒβ†’0𝛽(𝜌)=0.

In the case when we have only vanishing diffusion, it is usually possible to obtain uniform 𝐿∞ bound for the corresponding sequence of solutions under relatively mild assumptions on the flux and initial data (see, e.g., [9, 10]). In the case when we have both vanishing diffusion and vanishing dispersion, we must assume more on the flux in order to obtain even much weaker bounds (see Theorem 3.2). We remark that demand on controlling the flux at infinity is rather usual in the case of conservation laws with vanishing diffusion and dispersion (see, e.g., [16, 17, 19]).

Remark 3.1. For an arbitrary compactly supported, nonnegative πœ‘1∈𝐢∞0(𝐑+×𝐑𝑑) and πœ‘2∈𝐢∞0(𝐑) with total mass one denote πœ‘πœš1(𝑧,𝑒)=πœšπ‘‘+1πœ‘1ξ‚΅π‘§πœšξ‚Ά1πœ‘π›½(𝜚)2𝑒𝛽(𝜚),(3.3)π‘§βˆˆπ‘+×𝐑𝑑 and π‘’βˆˆπ‘, where 𝛽 is a positive function tending to zero as πœšβ†’0. In the case when the flux π‘“βˆˆπΆ(𝐑;𝐡𝑉(𝐑+×𝐑𝑑))βˆ©π΅π‘‰(𝐑×𝐑+×𝐑𝑑)) is bounded, straightforward computation shows that the sequence π‘“πœš=π‘“β‹†πœ‘πœš=(𝑓1𝜚,…,π‘“π‘‘πœš) satisfies (H4b) with 𝛽(𝜚)=𝜚.

We also need to assume that the flux 𝑓 is genuinely nonlinear, that is, for every (𝑑,π‘₯)βˆˆπ‘+×𝐑𝑑 and every πœ‰βˆˆπ‘π‘‘β§΅{0}, the mapping

π‘βˆ‹πœ†βŸΌπ‘‘ξ“π‘–=1π‘“π‘–πœ‰(𝑑,π‘₯,πœ†)𝑖||πœ‰||(3.4) is nonconstant on every nondegenerate interval of the real line.

We will analyze the vanishing diffusion-dispersion-smoothing limit of the problem

πœ•π‘‘π‘’+divπ‘₯π‘“πœš(𝑑,π‘₯,𝑒)=πœ€divπ‘₯𝑏(βˆ‡π‘’)+𝛿𝑑𝑗=1πœ•3π‘₯𝑗π‘₯𝑗π‘₯𝑗𝑒,(3.5)𝑒(π‘₯,0)=𝑒0,πœ€(π‘₯),π‘₯βˆˆπ‘π‘‘,(3.6) where the flux π‘“πœš satisfies the conditions (H4b). We denote the solution of (3.5)-(3.6) by π‘’πœ€=π‘’πœ€(𝑑,π‘₯). We assume that

‖‖𝑒0,πœ€βˆ’π‘’0‖‖𝐿2ξ€·π‘π‘‘ξ€Έβ€–β€–π‘’βŸΆ0,0,πœ€β€–β€–πΏ2𝐑𝑑‖‖𝑒+πœ€0,πœ€β€–β€–π»1𝐑𝑑≀𝐢.(3.7) We also assume that 𝜚=𝜚(πœ€)β†’0 and 𝛿=𝛿(πœ€)β†’0 as πœ€β†’0. We want to prove that under certain conditions, a sequence of solutions (π‘’πœ€)πœ€>0 of (3.5)-(3.6) converges to a weak solution of problem (3.1) as πœ€β†’0. To do this in the multidimensional case we use the approach of 𝐻-measures, introduced in [11] and further developed in [10, 21]. In the one-dimensional case, we use the compensated compactness method, following [13].

In order to accomplish the plan we need the following a priori estimates.

Theorem 3.2 (a priori inequalities). Suppose that the flux 𝑓(𝑑,π‘₯,𝑒) satisfies (H4). Also assume that the initial data 𝑒0 satisfies (3.7). Under these conditions the sequence of smooth solutions (π‘’πœ€)πœ€>0 of (3.5)-(3.6) satisfies the following inequalities for every π‘‘βˆˆ[0,𝑇]: ξ€œπ‘π‘‘||π‘’πœ€(||𝑑,π‘₯)2ξ€œπ‘‘π‘₯+πœ€π‘‘0ξ€œπ‘π‘‘||βˆ‡π‘’πœ€(||π‘₯,𝑠)2𝑑π‘₯𝑑𝑠≀𝐢4ξ‚΅ξ€œπ‘π‘‘||𝑒0,πœ€(||π‘₯)2𝑑π‘₯+𝐢10ξ‚Ά,πœ€(3.8)2ξ€œπ‘π‘‘||βˆ‡π‘’πœ€(||𝑑,π‘₯)2𝑑π‘₯+πœ€3ξ€œπ‘‘0ξ€œπ‘π‘‘||𝐷2π‘’πœ€ξ€·π‘‘ξ…žξ€Έ||,π‘₯2𝑑π‘₯π‘‘π‘‘ξ…žβ‰€πΆ5ξ‚΅πœ€2ξ€œπ‘π‘‘||βˆ‡π‘’0,πœ€(||π‘₯)2πœ€π‘‘π‘₯+𝜚𝐢11+𝐢12𝛽(𝜚)2ξ‚Ά,(3.9) for some constants 𝐢10,𝐢11,𝐢12 (the constants 𝐢4,𝐢5 are introduced in Theorem 2.1).

Proof. For every fixed 𝜚, the function π‘“πœš=(𝑓1𝜚,…,π‘“π‘‘πœš) is smooth, and, due to (H4), we see that π‘“πœš satisfies (H3). This means that we can apply Theorem 2.1.
Replacing the flux 𝑓 by π‘“πœš from (3.5) and 𝑒0 by 𝑒0,πœ€ from (3.6) in (2.10) and (2.11), we get ξ€œπ‘π‘‘||π‘’πœ€(||𝑑,π‘₯)2ξ€œπ‘‘π‘₯+πœ€π‘‘0ξ€œπ‘π‘‘||βˆ‡π‘’πœ€(||π‘₯,𝑠)2𝑑π‘₯𝑑𝑠≀𝐢3ξƒ©ξ€œπ‘π‘‘||𝑒0,πœ€||(π‘₯)2ξ€œπ‘‘π‘₯βˆ’π‘‘0ξ€œπ‘π‘‘ξ€œπ‘’πœ€ξ€·π‘‘β€²ξ€Έ0,π‘₯divπ‘₯π‘“πœšξ€·π‘‘ξ…žξ€Έ,π‘₯,𝑣𝑑𝑣𝑑π‘₯π‘‘π‘‘ξ…žξƒͺ,πœ€(3.10)2ξ€œπ‘π‘‘||βˆ‡π‘’πœ€(||𝑑,π‘₯)2𝑑π‘₯+πœ€3ξ€œπ‘‘0ξ€œπ‘π‘‘||𝐷2π‘’πœ€ξ€·π‘‘ξ…žξ€Έ||,π‘₯2𝑑π‘₯π‘‘π‘‘ξ…žβ‰€πΆ4ξƒ©πœ€2ξ€œπ‘π‘‘||βˆ‡π‘’0,πœ€||(π‘₯)2β€–β€–πœ•π‘‘π‘₯+π‘’π‘“πœšβ€–β€–2πΏβˆžξ€·π‘+Γ—π‘π‘‘ξ€ΈΓ—π‘ξ€œ+πœ€π‘‘0ξ€œπ‘π‘‘π‘‘ξ“π‘‘π‘˜=1𝑖=1ξ€Ίπœ•π‘₯π‘˜π‘“π‘–πœšξ€·π‘‘ξ…ž,π‘₯,π‘’πœ€ξ€·π‘‘ξ…ž,π‘₯ξ€Έξ€Έξ€»2𝑑π‘₯π‘‘π‘‘ξ…žξƒͺ.(3.11) To proceed, we use assumption (H4). We have ξ€œπ‘‘0ξ€œπ‘π‘‘ξ€œπ‘’πœ€ξ€·π‘‘β€²ξ€Έ0,π‘₯divπ‘“π‘–πœšξ€·π‘‘ξ…žξ€Έ,π‘₯,𝑣𝑑𝑣𝑑π‘₯π‘‘π‘‘ξ…žβ‰€ξ€œπ‘‘0ξ€œπ‘π‘‘ξ€œπ‘π‘‘ξ“π‘–=1||πœ•π‘₯π‘–π‘“π‘–πœšξ€·π‘‘ξ…žξ€Έ||β‰€ξ€œ,π‘₯,𝑣𝑑𝑣𝑑π‘₯𝑑𝑑𝐑𝐢11+|𝑣|1+𝛼𝑑𝑣≀𝐢10,(3.12) which together with (3.10) immediately gives (3.8).
Similarly, combining (H4) and (3.11), and arguing as in (3.12), we get (3.9).

In this section, we will inspect the convergence of a family (π‘’πœ€)πœ€>0 of solutions to (3.5)-(3.6) in the case when

π‘ξ€·πœ†1,…,πœ†π‘‘ξ€Έ=ξ€·πœ†1,…,πœ†π‘‘ξ€Έ(3.13) for the function 𝑏 appearing in the right-hand side of (3.5). This is not an essential restriction, but we will use it in order to simplify the presentation.

Thus, we use the following theorem which can be proved using the 𝐻-measures approach (see, e.g., [10, Corollary 2 and Remark 3]). We let πœƒ denote the Heaviside function.

Theorem 3.3 (see [10]). Assume that the vector 𝑓(𝑑,π‘₯,𝑒) is genuinely nonlinear in the sense of (3.4). Then each family (π‘£πœ€(𝑑,π‘₯))πœ€>0βŠ‚πΏβˆž(𝐑+×𝐑𝑑) such that for every π‘βˆˆπ‘ the distribution πœ•π‘‘ξ€·πœƒξ€·π‘£πœ€π‘£βˆ’π‘ξ€Έξ€·πœ€βˆ’π‘ξ€Έξ€Έ+divπ‘₯ξ€·πœƒξ€·π‘£πœ€π‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,π‘£πœ€ξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)ξ€Έξ€Έ(3.14) is precompact in π»βˆ’1loc contains a subsequence convergent in 𝐿1loc(𝐑+×𝐑𝑑).

We can now prove the following theorem.

Theorem 3.4. Assume that the flux vector 𝑓 is genuinely nonlinear in the sense of (3.4) and that it satisfies (H4). Furthermore, assume that 𝜚=πœ€,𝛿=πœ€2𝜌2(πœ€)with𝜌(πœ€)=π’ͺ(𝛽(πœ€)),(3.15) and that 𝑒0,πœ€ satisfies (3.7). Then, there exists a subsequence of the family (π‘’πœ€)πœ€>0 of solutions to (3.5)–(3.6) that converges to a weak solution of problem (3.1).

Proof. We will use Theorem 3.3. Since it is well known that the family (π‘’πœ€)πœ€>0 of solutions of problem (3.5)–(3.6) is not uniformly bounded, we cannot directly apply the conditions of Theorem 3.3.
Take an arbitrary 𝐢2 function 𝑆=𝑆(𝑒), π‘’βˆˆπ‘, and multiply the regularized equation (3.5) by π‘†ξ…ž(π‘’πœ€). As usual, put ξ€œπ‘ž(𝑑,π‘₯,𝑒)=𝑒0π‘†ξ…ž(𝑣)πœ•π‘’π‘“πœšξ€·π‘žπ‘‘π‘£,π‘ž=1,…,π‘žπ‘‘ξ€Έ.(3.16)
We easily find that πœ•π‘‘π‘†ξ€·π‘’πœ€ξ€Έ+divπ‘₯π‘žξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έβˆ’divπ‘₯π‘ž(𝑑,π‘₯,𝑣)βˆ£π‘£=π‘’πœ€+π‘†ξ…žξ€·π‘’πœ€ξ€Έdivπ‘₯π‘“πœš(𝑑,π‘₯,𝑣)βˆ£π‘£=π‘’πœ€=πœ€divπ‘₯ξ€·π‘†ξ…žξ€·π‘’πœ€ξ€Έβˆ‡π‘’πœ€ξ€Έβˆ’πœ€π‘†ξ…žξ…žξ€·π‘’πœ€ξ€Έ||βˆ‡π‘’πœ€||2+𝛿𝑑𝑗=1𝐷π‘₯π‘—ξ‚€π‘†ξ…žξ€·π‘’πœ€ξ€Έπœ•2π‘₯𝑗π‘₯π‘—π‘’πœ€ξ‚βˆ’π›Ώπ‘‘ξ“π‘—=1π‘†ξ…žξ…žξ€·π‘’πœ€ξ€Έπœ•π‘₯π‘—π‘’πœ€πœ•2π‘₯𝑗π‘₯π‘—π‘’πœ€.(3.17) We will apply this formula repeatedly with different choices for 𝑆(𝑒).
In order to apply Theorem 3.3, we will consider a truncated sequence (𝑇𝑙(π‘’πœ€))πœ€>0, where the truncation function 𝑇𝑙 is defined for every fixed π‘™βˆˆπ as π‘‡π‘™βŽ§βŽͺ⎨βŽͺ⎩(𝑒)=βˆ’π‘™,π‘’β‰€βˆ’π‘™,𝑒,βˆ’π‘™β‰€π‘’β‰€π‘™,𝑙,𝑒β‰₯𝑙.(3.18) We will prove that the sequence (𝑇𝑙(π‘’πœ€))πœ€>0 is precompact for every fixed 𝑙. Denote by 𝑒𝑙 a subsequential limit (in 𝐿1loc) of the family (𝑇𝑙(π‘’πœ€))πœ€>0, which gives raise to a new sequence (𝑒𝑙)𝑙>1 that we prove converges to a weak solution of (3.1).
To carry out this plan, we must replace 𝑇𝑙 by a 𝐢2 regularization 𝑇𝑙,πœŽβˆΆπ‘β†’π‘. We define 𝑇𝑙,πœŽβˆΆπ‘β†’π‘ by 𝑇𝑙,𝜎(0)=0 and π‘‡ξ…žπ‘™,𝜎(⎧βŽͺ⎨βŽͺβŽ©π‘’)=1,|𝑒|<𝑙,π‘™βˆ’|𝑒|+𝜎𝜎,𝑙<|𝑒|<𝑙+𝜎,0,|𝑒|>𝑙+𝜎.(3.19)
Next, we want to estimate β€–π‘‡ξ…žξ…žπ‘™,𝜎(π‘’πœ€)βˆ‡π‘’πœ€β€–πΏ2(𝐑+×𝐑𝑑). To accomplish this, we insert the functions 𝑇±𝑙,𝜎 for 𝑆 in (3.17) where 𝑇±𝑙,𝜎 are defined by 𝑇±𝑙,𝜎(0)=0 and 𝑇+𝑙,πœŽξ‚ξ…žβŽ§βŽͺ⎨βŽͺ⎩(𝑒)=1,𝑒<𝑙,𝑙+πœŽβˆ’π‘’πœŽξ€·π‘‡,𝑙<𝑒<𝑙+𝜎,0,𝑒>𝑙+𝜎,(3.20)βˆ’π‘™,πœŽξ€Έξ…žβŽ§βŽͺ⎨βŽͺ⎩(𝑒)=1,𝑒>βˆ’π‘™,𝑙+𝜎+π‘’πœŽ,βˆ’π‘™βˆ’πœŽ<𝑒<βˆ’π‘™,0,𝑒<βˆ’π‘™βˆ’πœŽ.(3.21) Notice that 𝑇±𝑙,πœŽξ‚(𝑒)ξ…ž||𝑇≀1,±𝑙,𝜎||𝜎(𝑒)≀|𝑒|+2,𝑇+𝑙,𝜎(𝑒)=π‘‡βˆ’π‘™,𝜎(𝑒)forβˆ’π‘™β‰€π‘’β‰€π‘™.(3.22) By inserting 𝑆(𝑒)=βˆ’π‘‡+𝑙,𝜎(𝑒), π‘ž=π‘ž+∫(𝑑,π‘₯,𝑒)=βˆ’π‘’0(𝑇+𝑙,𝜎)ξ…ž(𝑣)πœ•π‘’π‘“πœšπ‘‘π‘£ in (3.17) and integrating over Π𝑑=[0,𝑑]×𝐑𝑑, we get βˆ’ξ€œπ‘π‘‘π‘‡+𝑙,πœŽξ€·π‘’πœ€ξ€Έξ€œπ‘‘π‘₯+𝐑𝑑𝑇+𝑙,πœŽξ€·π‘’0ξ€Έπœ€π‘‘π‘₯+πœŽξ€Ξ π‘‘βˆ©ξ€½π‘™<π‘’πœ€ξ€Ύ<𝑙+𝜎||βˆ‡π‘’πœ€||2=𝑑π‘₯𝑑𝑑Π𝑑divπ‘₯π‘ž+(𝑑,π‘₯,𝑣)βˆ£π‘£=π‘’πœ€ξ€π‘‘π‘₯𝑑𝑑+Π𝑑𝑇+𝑙,πœŽξ‚ξ…žξ€·π‘’πœ€ξ€Έdivπ‘₯π‘“πœš(𝑑,π‘₯,𝑣)βˆ£π‘£=π‘’πœ€βˆ’π›Ώπ‘‘π‘₯π‘‘π‘‘πœŽξ€Ξ π‘‘βˆ©ξ€½π‘™<π‘’πœ€ξ€Ύπ‘‘<𝑙+πœŽξ“π‘—=1πœ•π‘₯π‘—π‘’πœ€πœ•2π‘₯𝑗π‘₯π‘—π‘’πœ€π‘‘π‘₯𝑑𝑑.(3.23) Similarly, for 𝑆(𝑒)=π‘‡βˆ’π‘™,𝜎(𝑒), π‘ž=π‘žβˆ’βˆ«(𝑑,π‘₯,𝑒)=𝑒0(π‘‡βˆ’π‘™,𝜎)ξ…ž(𝑣)πœ•π‘’π‘“πœšπ‘‘π‘£, we have from (3.17) ξ€œπ‘π‘‘π‘‡βˆ’π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€œπ‘‘π‘₯βˆ’π‘π‘‘π‘‡βˆ’π‘™,πœŽξ€·π‘’0ξ€Έπœ€π‘‘π‘₯+πœŽξ€Ξ π‘‘βˆ©ξ€½βˆ’π‘™βˆ’πœŽ<π‘’πœ€ξ€Ύ<βˆ’π‘™||βˆ‡π‘’πœ€||2=𝑑π‘₯𝑑𝑑Π𝑑divπ‘₯π‘žβˆ’(𝑑,π‘₯,𝑣)βˆ£π‘£=π‘’πœ€ξ€π‘‘π‘₯π‘‘π‘‘βˆ’Ξ π‘‘ξ€·π‘‡βˆ’π‘™,πœŽξ€Έξ…žξ€·π‘’πœ€ξ€Έdivπ‘₯π‘“πœš(𝑑,π‘₯,𝑣)βˆ£π‘£=π‘’πœ€+𝛿𝑑π‘₯π‘‘π‘‘πœŽξ€Ξ π‘‘βˆ©ξ€½βˆ’π‘™βˆ’πœŽ<π‘’πœ€ξ€Ύπ‘‘<βˆ’π‘™ξ“π‘—=1πœ•π‘₯π‘—π‘’πœ€πœ•2π‘₯𝑗π‘₯π‘—π‘’πœ€π‘‘π‘₯𝑑𝑑.(3.24) Adding (3.23) to (3.24), we get πœ€πœŽξ€Ξ π‘‘βˆ©ξ€½||𝑒𝑙<πœ€||ξ€Ύ<𝑙+𝜎||βˆ‡π‘’πœ€||2ξ€œπ‘‘π‘₯𝑑𝑑=βˆ’π‘π‘‘ξ‚€π‘‡βˆ’π‘™,πœŽξ€·π‘’πœ€ξ€Έβˆ’π‘‡+𝑙,πœŽξ€·π‘’πœ€ξ€Έξ‚ξ€œπ‘‘π‘₯+π‘π‘‘ξ‚€π‘‡βˆ’π‘™,πœŽξ€·π‘’0ξ€Έβˆ’π‘‡+𝑙,πœŽξ€·π‘’0+𝑑π‘₯Π𝑑divπ‘₯π‘žβˆ’(𝑑,π‘₯,𝑣)βˆ£π‘£=π‘’πœ€ξ€π‘‘π‘₯𝑑𝑑+Π𝑑divπ‘₯π‘ž+(𝑑,π‘₯,𝑣)βˆ£π‘£=π‘’πœ€βˆ’ξ€π‘‘π‘₯π‘‘π‘‘Ξ π‘‘ξ€·π‘‡βˆ’π‘™,πœŽξ€Έξ…žξ€·π‘’πœ€ξ€Έdivπ‘₯π‘“πœš(𝑑,π‘₯,𝑣)βˆ£π‘£=π‘’πœ€ξ€π‘‘π‘₯𝑑𝑑+Π𝑑𝑇+𝑙,πœŽξ‚ξ…žξ€·π‘’πœ€ξ€Έdivπ‘₯π‘“πœš(𝑑,π‘₯,𝑣)βˆ£π‘£=π‘’πœ€+𝛿𝑑π‘₯π‘‘π‘‘πœŽξ€Ξ π‘‘βˆ©ξ€½βˆ’π‘™βˆ’πœŽ<π‘’πœ€ξ€Ύπ‘‘<βˆ’π‘™ξ“π‘—=1πœ•π‘₯π‘—π‘’πœ€πœ•2π‘₯𝑗π‘₯π‘—π‘’πœ€π›Ώπ‘‘π‘₯π‘‘π‘‘βˆ’πœŽξ€Ξ π‘‘βˆ©ξ€½π‘™<π‘’πœ€ξ€Ύπ‘‘<𝑙+πœŽξ“π‘—=1πœ•π‘₯π‘—π‘’πœ€πœ•2π‘₯𝑗π‘₯π‘—π‘’πœ€π‘‘π‘₯𝑑𝑑.(3.25) From (3.22) and the definition of π‘žβˆ’ and π‘ž+, it follows πœ€πœŽξ€Ξ π‘‘βˆ©ξ€½||𝑒𝑙<πœ€||ξ€Ύ<𝑙+𝜎||βˆ‡π‘’πœ€||2ξ€œπ‘‘π‘₯𝑑𝑑≀||π‘’πœ€||>𝑙2||π‘’πœ€||ξ€œπ‘‘π‘₯+||𝑒0||>𝑙2||𝑒0||𝑑π‘₯+2Ξ π‘‘ξ€œπ‘π‘‘ξ“π‘–=1||𝐷2π‘₯π‘–π‘£π‘“π‘–πœš(||𝑑,π‘₯,𝑣)𝑑𝑣𝑑π‘₯𝑑𝑑+2Π𝑑𝑑𝑖=1||πœ•π‘₯π‘–π‘“π‘–πœšξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ||𝛿𝑑π‘₯𝑑𝑑+2πœŽξ€Ξ π‘‘βˆ©ξ€½||π‘’π‘™βˆ’πœŽ<πœ€||𝑑<𝑙𝑗=1|||πœ•π‘₯π‘—π‘’πœ€πœ•2π‘₯𝑗π‘₯π‘—π‘’πœ€|||𝑑π‘₯𝑑𝑑.(3.26) Without loss of generality, we can assume that 𝑙>1. Having this in mind, we get from (H4) and (3.26) πœ€πœŽξ€Ξ π‘‘βˆ©ξ€½||𝑒𝑙<πœ€||ξ€Ύ<𝑙+𝜎||βˆ‡π‘’πœ€||2β‰€ξ€œπ‘‘π‘₯𝑑𝑑||π‘’πœ€||>𝑙2||π‘’πœ€||2ξ€œπ‘‘π‘₯+||𝑒0||>𝑙2||𝑒0||2ξ€œπ‘‘π‘₯+2𝐑𝑑𝑖=1𝐢31+|𝑣|1+𝛼𝑑𝑣+2Π𝑑𝑑𝑖=1||πœ•π‘₯π‘–π‘“π‘–πœšξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ||𝛿𝑑π‘₯𝑑𝑑+2πœŽξ€Ξ π‘‘βˆ©ξ€½||𝑒𝑙<πœ€||𝑑<𝑙+πœŽξ“π‘—=1|||πœ•π‘₯π‘—π‘’πœ€πœ•2π‘₯𝑗π‘₯π‘—π‘’πœ€|||β‰€ξ€œπ‘‘π‘₯𝑑𝑑𝐑𝑑2ξ‚€||π‘’πœ€||(π‘₯,𝑑)2+||𝑒0||(π‘₯,𝑑)2𝑑π‘₯+𝐾1+𝐾2𝛿+2πœŽπœ€2𝑑𝑖=1β€–β€–πœ€1/2πœ•π‘₯π‘–π‘’πœ€β€–β€–πΏ2𝐑+Γ—π‘π‘‘ξ€ΈΓ—β€–β€–πœ€3/2πœ•2π‘₯𝑖π‘₯π‘–π‘’πœ€β€–β€–πΏ2(𝐑+×𝐑𝑑)≀𝐾5+𝛿2𝜎2πœ€4(𝛽(𝜚))2+𝛿2𝜎2πœ€4ξ‚Ά1/2𝐾3𝐾4,(3.27) where 𝐾𝑖, 𝑖=1,…,5, are constants such that (cf. (3.8) and (3.9)) 2ξ€œπ‘π‘‘ξ“π‘–=1𝐢31+|𝑣|1+𝛼𝑑𝑣≀𝐾1,2Π𝑑𝑑𝑖=1||πœ•π‘₯π‘–π‘“π‘–πœšξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ||𝑑π‘₯𝑑𝑑≀𝐾2,𝑑𝑖=1β€–β€–πœ€1/2πœ•π‘₯π‘–π‘’πœ€β€–β€–πΏ2𝐑+×𝐑𝑑≀𝐾3,𝑑𝑖=1β€–β€–πœ€3/2πœ•2π‘₯𝑖π‘₯π‘–π‘’πœ€β€–β€–πΏ2𝐑+×𝐑𝑑≀1(𝛽(𝜚))2+πœ€πœšξ‚Ά1/2𝐾4,ξ€œπ‘π‘‘2ξ‚€||π‘’πœ€(||π‘₯,𝑑)2+||𝑒0(||π‘₯,𝑑)2𝑑π‘₯+𝐾1+𝐾2≀𝐾5.(3.28) These estimates follow from (H4) and the a priori estimates (3.8), (3.9). If in addition we use the assumption πœ€=𝜚 from (3.15), we conclude π›ΏπœŽπœ€2β€–πœ€1/2βˆ‡π‘’πœ€β€–πΏ2𝐑+×𝐑𝑑𝑑𝑖=1β€–πœ€3/2πœ•2π‘₯𝑖π‘₯π‘–π‘’πœ€β€–πΏ2𝐑+×𝐑𝑑≀𝛿2𝜎2πœ€4𝛽2+𝛿(πœ€)2𝜎2πœ€4ξ‚Ά1/2𝐾3𝐾4.(3.29) Thus, in view of (3.27), πœ€πœŽξ€Ξ π‘‘βˆ©ξ€½||𝑒𝑙<πœ€||ξ€Ύ<𝑙+𝜎||βˆ‡π‘’πœ€||2𝑑π‘₯𝑑𝑑≀𝐾5+𝛿2𝜎2πœ€4𝛽2+𝛿(πœ€)2𝜎2πœ€4ξ‚Ά1/2𝐾3𝐾4,(3.30) which is the sought for estimate for β€–π‘‡ξ…žξ…žπ‘™,𝜎(π‘’πœ€)βˆ‡π‘’πœ€β€–πΏ2(𝐑+×𝐑𝑑).
Next, take a function π‘ˆπœŒ(𝑧) satisfying π‘ˆπœŒ(0)=0 and π‘ˆξ…žπœŒβŽ§βŽͺ⎨βŽͺβŽ©π‘§(𝑧)=0,𝑧<0,𝜌,0<𝑧<𝜌,1,𝑧>𝜌.(3.31) Clearly, π‘ˆπœŒ is convex, and π‘ˆξ…žπœŒ(𝑧)β†’πœƒ(𝑧) in 𝐿𝑝loc(𝐑) as πœŒβ†’0, for any 𝑝<∞; as before, πœƒ denotes the Heaviside function.
Inserting 𝑆(π‘’πœ€)=π‘ˆπœŒ(𝑇𝑙,𝜎(π‘’πœ€)βˆ’π‘) in (3.17), we get πœ•π‘‘π‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘+divπ‘₯ξ€œπ‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€Έπ‘‡(𝑣)βˆ’π‘ξ…žπ‘™,𝜎(𝑣)πœ•π‘£π‘“πœš=ξ€œ(𝑑,π‘₯,𝑣)π‘‘π‘£π‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€Έπ‘‡(𝑣)βˆ’π‘ξ…žπ‘™,𝜎(𝑣)divπ‘₯πœ•π‘£π‘“πœš(𝑑,π‘₯,𝑣)π‘‘π‘£βˆ’π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έπ‘‡βˆ’π‘ξ…žπ‘™,πœŽξ€·π‘’πœ€ξ€Έdivπ‘₯π‘“πœš(𝑑,π‘₯,𝑣)βˆ£π‘£=π‘’πœ€+πœ€Ξ”π‘₯π‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘βˆ’πœ€π·2π‘’π‘’ξ€Ίπ‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έ||βˆ’π‘ξ€Έξ€»βˆ‡π‘’πœ€||2+𝛿𝑑𝑖=1𝐷π‘₯π‘–ξ€·π·π‘’ξ€Ίπ‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έπœ•βˆ’π‘ξ€Έξ€»2π‘₯𝑖π‘₯π‘–π‘’πœ€ξ€Έβˆ’π›Ώπ‘‘ξ“π‘–=1𝐷2π‘’π‘’ξ€Ίπ‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έπœ•βˆ’π‘ξ€Έξ€»π‘₯π‘–π‘’πœ€πœ•2π‘₯𝑖π‘₯π‘–π‘’πœ€.(3.32) We rewrite the previous expression in the following manner: πœ•π‘‘ξ€·πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘‡βˆ’π‘ξ€Έξ€·π‘™ξ€·π‘’πœ€ξ€Έβˆ’π‘ξ€Έξ€Έ+divπ‘₯ξ€·πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)ξ€Έξ€Έ=Ξ“1,πœ€+Ξ“2,πœ€+Ξ“3,πœ€+Ξ“4,πœ€+Ξ“5,πœ€+Ξ“6,πœ€+Ξ“7,πœ€,(3.33) where Ξ“1,πœ€=πœ•π‘‘ξ€·πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘‡βˆ’π‘ξ€Έξ€·π‘™ξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘βˆ’π‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έ,Ξ“βˆ’π‘ξ€Έξ€Έ2,πœ€=divπ‘₯ξ‚΅πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€ξ€Έβˆ’ξ€œξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)π‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€Έπ‘‡(𝑣)βˆ’π‘ξ…žπ‘™,𝜎(𝑣)πœ•π‘£π‘“πœšξ‚Ά,Ξ“(𝑑,π‘₯,𝑣)𝑑𝑣3,πœ€=ξ€œπ‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€Έπ‘‡(𝑣)βˆ’π‘ξ…žπ‘™,𝜎(𝑣)divπ‘₯πœ•π‘£π‘“πœš(𝑑,π‘₯,𝑣)π‘‘π‘£βˆ’π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έπ‘‡βˆ’π‘ξ…žπ‘™,πœŽξ€·π‘’πœ€ξ€Έdivπ‘₯π‘“πœš(𝑑,π‘₯,𝑣)βˆ£π‘£=π‘’πœ€,Ξ“4,πœ€=πœ€Ξ”π‘₯π‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘+𝛿𝑑𝑖=1𝐷π‘₯π‘–ξ€·π·π‘’ξ€Ίπ‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έπœ•βˆ’π‘ξ€Έξ€»2π‘₯𝑖π‘₯π‘–π‘’πœ€ξ€Έ,Ξ“5,πœ€=βˆ’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έπ‘‡βˆ’π‘ξ…žξ…žπ‘™,𝜎||||(π‘’πœ€)βˆ‡π‘’πœ€2,Ξ“6,πœ€=βˆ’π›Ώπ‘‘ξ“π‘–=1𝐷2π‘’π‘’ξ€Ίπ‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έπœ•βˆ’π‘ξ€Έξ€»π‘₯π‘–π‘’πœ€πœ•2π‘₯𝑖π‘₯π‘–π‘’πœ€,Ξ“7,πœ€=βˆ’πœ€π‘ˆπœŒξ…žξ…žξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘‡βˆ’π‘ξ€Έξ€·ξ…žπ‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έ2||βˆ‡π‘’πœ€||2.(3.34)
To continue, we assume that 𝜎 depends on πœ€ in the following way: 𝜎=𝜌=π’ͺ(𝛽(πœ€)).(3.35)
From here, we will prove that the sequence (𝑇𝑙(π‘’πœ€))πœ€>0 satisfies the assumptions of Theorem 3.3. Accordingly, we need to prove that the left-hand side of (3.33) is precompact in π»βˆ’1loc(𝐑+×𝐑𝑑).
To accomplish this, we use Murat's lemma ([22, Chapter 1, Corollary 1]). More precisely, we have to prove the following.
(i) When the left-hand side of (3.33) is written in the form divπ‘„πœ€, we have π‘„πœ€βˆˆπΏπ‘loc(𝐑+×𝐑𝑑) for 𝑝>2.
(ii) The right-hand side of (3.33) is of the form β„³loc,𝐡+π»βˆ’1loc,𝑐, where β„³loc,𝐡 denotes a set of families which are locally bounded in the space of measures, and π»βˆ’1loc,𝑐 is a set of families precompact in π»βˆ’1loc.
First, since 𝑇𝑙(π‘’πœ€) is uniformly bounded by 𝑙, we see that (i) is satisfied.
To prove (ii), we consider each term on the right-hand side of (3.33). First we prove that Ξ“1,πœ€=πœ•π‘‘ξ€·πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘‡βˆ’π‘ξ€Έξ€·π‘™ξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘βˆ’π‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έβˆ’π‘ξ€Έξ€Έβˆˆπ»βˆ’1loc,𝑐.(3.36) We have πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘‡βˆ’π‘ξ€Έξ€·π‘™ξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘βˆ’π‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έξ€·π‘‡βˆ’π‘=πœƒπ‘™ξ€·π‘’πœ€ξ€Έπ‘‡βˆ’π‘ξ€Έξ€·π‘™ξ€·π‘’πœ€ξ€Έξ€Έξ€·π‘‡βˆ’π‘βˆ’πœƒπ‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘‡βˆ’π‘ξ€Έξ€·π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έξ€·π‘‡βˆ’π‘+πœƒπ‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘‡βˆ’π‘ξ€Έξ€·π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘βˆ’π‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έ.βˆ’π‘(3.37) Since the function πœƒ(π‘§βˆ’π‘)(π‘§βˆ’π‘) is Lipschitz continuous in 𝑧 with the Lipschitz constant one, and, according to definition of π‘ˆπœŒ, it holds |π‘ˆπœŒ(𝑧)βˆ’πœƒ(𝑧)𝑧|≀1/2𝜌, we conclude from the last expression ||πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘‡βˆ’π‘ξ€Έξ€·π‘™ξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘βˆ’π‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έ||≀||π‘‡βˆ’π‘π‘™ξ€·π‘’πœ€ξ€Έβˆ’π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έ||+π’ͺ(𝜌)≀π’ͺ(𝜎)+π’ͺ(𝜌).(3.38)
From this and assumptions (3.15) and (3.35) on 𝜎=𝜎(πœ€) and 𝜌=𝜌(πœ€), it follows that as πœ€β†’0πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘‡βˆ’π‘ξ€Έξ€·π‘™ξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘βˆ’π‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘βŸΆ0(3.39) in 𝐿𝑝loc for all 𝑝<∞. Thus, (since we can take 𝑝=2 as well) we see that Ξ“1,πœ€βˆˆπ»βˆ’1loc,𝑐.
Next, we will prove that Ξ“2,πœ€=divπ‘₯ξ‚΅πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€ξ€Έβˆ’ξ€œξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)π‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€Έπ‘‡(𝑣)βˆ’π‘ξ…žπ‘™,𝜎(𝑣)πœ•π‘£π‘“πœšξ‚Ά(𝑑,π‘₯,𝑣)π‘‘π‘£βˆˆπ»βˆ’1loc,𝑐+β„³loc,𝐡.(3.40) Indeed, πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€ξ€Έβˆ’ξ€œξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)π‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€Έπ‘‡(𝑣)βˆ’π‘ξ…žπ‘™,𝜎(𝑣)πœ•π‘£π‘“πœšξ€·π‘‡(𝑑,π‘₯,𝑣)𝑑𝑣=πœƒπ‘™ξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€ξ€Έξ€·π‘‡ξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)βˆ’πœƒπ‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘“βˆ’π‘ξ€Έξ€·πœšξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘“πœšξ€Έξ€·π‘‡(𝑑,π‘₯,𝑐)+πœƒπ‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έβˆ’ξ€œξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)π‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€Έπ‘‡(𝑣)βˆ’π‘ξ…žπ‘™(𝑣)πœ•π‘£π‘“πœšβˆ’ξ€œ(𝑑,π‘₯,𝑣)π‘‘π‘£π‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽπ‘‡(𝑣)βˆ’π‘ξ€Έξ€·ξ…žπ‘™,𝜎(𝑣)βˆ’π‘‡ξ…žπ‘™ξ€Έπœ•(𝑣)π‘£π‘“πœš(𝑑,π‘₯,𝑣)𝑑𝑣.(3.41) Since 𝑇𝑙(𝑒)=𝑒 if |𝑒|≀𝑙 and π‘‡ξ…žπ‘™(𝑒)=0 if |𝑒|β‰₯𝑙, ξ€œπ‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€Έπ‘‡(𝑣)βˆ’π‘ξ…žπ‘™(𝑣)πœ•π‘£π‘“πœšξ€œ(𝑑,π‘₯,𝑣)𝑑𝑣=π‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€Έπ‘‡(𝑣)βˆ’π‘ξ…žπ‘™(𝑣)πœ•π‘£π‘“πœšξ€·π‘‘,π‘₯,𝑇𝑙(𝑣)𝑑𝑣,(3.42) from which we conclude πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€ξ€Έβˆ’ξ€œξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)π‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€Έπ‘‡(𝑣)βˆ’π‘ξ…žπ‘™,𝜎(𝑣)πœ•π‘£π‘“πœšξ€·π‘‡(𝑑,π‘₯,𝑣)𝑑𝑣=πœƒπ‘™ξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€ξ€Έξ€·π‘‡ξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)βˆ’πœƒπ‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έξ€·π‘‡ξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)+πœƒπ‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έβˆ’ξ€œξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)π‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,𝜎(𝑇𝑣)βˆ’π‘ξ…žπ‘™(𝑣)πœ•π‘£π‘“πœšξ€·π‘‘,π‘₯,𝑇𝑙(ξ€Έβˆ’ξ€œπ‘£)π‘‘π‘£π‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,𝜎(𝑇𝑣)βˆ’π‘ξ€Έξ€·ξ…žπ‘™,𝜎(𝑣)βˆ’π‘‡ξ…žπ‘™(ξ€Έπœ•π‘£)π‘£π‘“πœš(𝑇𝑑,π‘₯,𝑣)𝑑𝑣=πœƒπ‘™ξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€ξ€Έξ€·π‘‡ξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)βˆ’πœƒπ‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έξ€·π‘‡ξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)+πœƒπ‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έβˆ’ξ€œξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)π‘’πœ€πœƒξ€·π‘‡π‘™,πœŽξ€Έπ·(𝑣)βˆ’π‘π‘£ξ€Ίπ‘“πœšξ€·π‘‘,π‘₯,π‘‡π‘™βˆ’ξ€œ(𝑣)ξ€Έξ€»π‘‘π‘£π‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽπ‘‡(𝑣)βˆ’π‘ξ€Έξ€·ξ…žπ‘™,𝜎(𝑣)βˆ’π‘‡ξ…žπ‘™ξ€Έπœ•(𝑣)π‘£π‘“πœšβˆ’ξ€œ(𝑑,π‘₯,𝑣)π‘‘π‘£π‘’πœ€ξ€·π‘ˆξ…žπœŒξ€·π‘‡π‘™,𝜎(𝑇𝑣)βˆ’π‘βˆ’πœƒπ‘™,𝜎(𝑇𝑣)βˆ’π‘ξ€Έξ€Έξ…žπ‘™(𝑣)πœ•π‘£π‘“πœšξ€·π‘‘,π‘₯,𝑇𝑙(𝑣)𝑑𝑣=Ξ“12,πœ€+Ξ“22,πœ€+Ξ“32,πœ€,(3.43) with Ξ“12,πœ€ξ€·π‘‡=πœƒπ‘™ξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€ξ€Έξ€·π‘‡ξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)βˆ’πœƒπ‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έ,Ξ“ξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)22,πœ€ξ€·π‘‡=πœƒπ‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έβˆ’ξ€œξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)π‘’πœ€πœƒξ€·π‘‡π‘™,πœŽξ€Έπ·(𝑣)βˆ’π‘π‘£ξ€Ίπ‘“πœšξ€·π‘‘,π‘₯,𝑇𝑙Γ(𝑣)𝑑𝑣,32,πœ€ξ€œ=βˆ’π‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽπ‘‡(𝑣)βˆ’π‘ξ€Έξ€·ξ…žπ‘™,𝜎(𝑣)βˆ’π‘‡ξ…žπ‘™ξ€Έπœ•(𝑣)π‘£π‘“πœšβˆ’ξ€œ(𝑑,π‘₯,𝑣)π‘‘π‘£π‘’πœ€ξ€·π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€Έξ€·π‘‡(𝑣)βˆ’π‘βˆ’πœƒπ‘™,πœŽπ‘‡(𝑣)βˆ’π‘ξ€Έξ€Έξ…žπ‘™(𝑣)πœ•π‘£π‘“πœšξ€·π‘‘,π‘₯,𝑇𝑙(𝑣)𝑑𝑣.(3.44)
Consider now each term on the right-hand side of (3.43). Since 𝑇𝑙 is a continuous function and 𝑇𝑙(𝑒)∈[βˆ’π‘™,𝑙], the function 𝑓(𝑑,π‘₯,𝑇𝑙(𝑒)) is uniformly continuous in π‘’βˆˆπ‘. Therefore, we have pointwise on 𝐑+×𝐑𝑑: ||Ξ“12,πœ€||=||πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€ξ€Έξ€·π‘‡ξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)βˆ’πœƒπ‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έ||ξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)⟢0aπ‘ πœŽβŸΆ0.(3.45) Since maxπ‘’βˆˆ[βˆ’π‘™,𝑙]𝑓(𝑑,π‘₯,𝑒)βˆˆπΏπ‘(𝐑+×𝐑𝑑), 𝑝>2, Lebesgue's dominated convergence theorem yields |Ξ“12,πœ€|=π‘œπœŽ,𝐿𝑝loc(1), where βˆ«π‘+×𝐑𝑑|π‘œπœŽ,𝐿𝑝(1)|𝑝𝑑π‘₯𝑑𝑑→0 as πœŽβ†’0. Thus, we conclude divπ‘₯Ξ“12,πœ€βˆˆπ»βˆ’1loc𝐑+×𝐑𝑑.(3.46)
We pass to Ξ“22,πœ€. We have to distinguish between different cases depending on the relative size of 𝑐 and 𝑙. Consider first the case when |𝑐|≀𝑙, in which case we have 𝑇𝑙(𝑐)=𝑐 and 𝑇𝑙,𝜎(𝑐)=𝑐. Thus, ||Ξ“22,πœ€||=||||πœƒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έβˆ’ξ€œξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)π‘’πœ€πœƒξ€·π‘‡π‘™,𝜎(𝐷𝑣)βˆ’π‘π‘£ξ€Ίπ‘“πœšξ€·π‘‘,π‘₯,𝑇𝑙(||||=||||πœƒξ€·π‘‡π‘£)𝑑𝑣𝑙,πœŽξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έξ€·π‘‡ξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)βˆ’πœƒπ‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έξ€œβˆ’π‘π‘’πœ€π‘π·π‘£ξ€Ίπ‘“πœšξ€·π‘‘,π‘₯,𝑇𝑙(||||=||πœƒξ€·π‘‡π‘£)𝑑𝑣𝑙,πœŽξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έξ€·π‘‡ξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)βˆ’πœƒπ‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘“βˆ’π‘ξ€Έξ€·πœšξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘“πœš(ξ€Έ||≀||πœƒξ€·π‘‡π‘‘,π‘₯,𝑐)𝑙,πœŽξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘“πœšξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€||+||πœƒξ€·π‘‡ξ€Έξ€Έξ€Έπ‘™,πœŽξ€·π‘’πœ€ξ€Έβˆ’π‘ξ€Έξ€·π‘“(𝑑,π‘₯,𝑐)βˆ’π‘“πœšξ€Έ||≀||πœƒξ€·π‘‡(𝑑,π‘₯,𝑐)𝑙,πœŽξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘“πœšξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€||+||πœƒξ€·π‘‡ξ€Έξ€Έξ€Έπ‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘“βˆ’π‘ξ€Έξ€·πœšξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘“πœšξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€||+||πœƒξ€·π‘‡ξ€Έξ€Έξ€Έπ‘™,πœŽξ€·π‘’πœ€ξ€Έβˆ’π‘ξ€Έξ€·π‘“(𝑑,π‘₯,𝑐)βˆ’π‘“πœš(ξ€Έ||𝑑,π‘₯,𝑐)=π‘œπœš,𝐿𝑝locξ‚΅πœŽ(1)+π’ͺ𝛽(𝜚)+π‘œπœš,𝐿𝑝loc(1)=π’ͺ(1)+π‘œπœš,𝐿𝑝loc(1),(3.47) where π‘œπœš,𝐿𝑝loc(1) appears due to (3.2a), and π’ͺ(1) comes from (3.35).
For 𝑐>𝑙 we have 𝑐β‰₯𝑙+𝜎 for a 𝜎 small enough, and therefore πœƒ(𝑇𝑙,𝜎(π‘’πœ€)βˆ’π‘)≑0. On the other hand, for 𝑐<βˆ’π‘™ we have π‘β‰€βˆ’π‘™βˆ’πœŽ, and so πœƒ(𝑇𝑙,𝜎(π‘’πœ€)βˆ’π‘)≑1. Thus, the problematic case is when 𝑐<βˆ’π‘™. In this case, we have instead of (3.47) Ξ“22,πœ€ξ€·π‘‡=πœƒπ‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έβˆ’ξ€œξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)π‘’πœ€πœƒξ€·π‘‡π‘™,πœŽξ€Έπ·(𝑣)βˆ’π‘π‘£ξ€Ίπ‘“πœšξ€·π‘‘,π‘₯,𝑇𝑙(𝑣)𝑑𝑣=𝑓𝑑,π‘₯,𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘“πœšξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€ξ€Έξ€Έ+π‘“πœš(𝑑,π‘₯,βˆ’π‘™)βˆ’π‘“(𝑑,π‘₯,𝑐)(3.48) implying divπ‘₯Ξ“22,πœ€βˆˆπ»βˆ’1loc,𝑐+β„³loc,𝐡,(3.49) since 𝑓(𝑑,π‘₯,𝑇𝑙,𝜎(π‘’πœ€))βˆ’π‘“πœš(𝑑,π‘₯,𝑇𝑙(π‘’πœ€))β†’0 in 𝐿𝑝loc(𝐑+×𝐑𝑑) for 𝑝β‰₯2, and π‘“πœš(𝑑,π‘₯,βˆ’π‘™)βˆ’π‘“(𝑑,π‘₯,𝑐)βˆˆπ΅π‘‰(𝐑+×𝐑𝑑).
It remains to estimate Ξ“32,πœ€. Noticing that |π‘ˆξ…žπœŒ|,|π‘‡ξ…žπ‘™,𝜎|≀1, we get ||||ξ€œπ‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽπ‘‡(𝑣)βˆ’π‘ξ€Έξ€·ξ…žπ‘™,𝜎(𝑣)βˆ’π‘‡ξ…žπ‘™ξ€Έπœ•(𝑣)π‘£π‘“πœš||||≀𝐢(𝑑,π‘₯,𝑣)π‘‘π‘£ξ€œπ›½(𝜌)𝐑||π‘‡ξ…žπ‘™,𝜎(𝑣)βˆ’π‘‡ξ…žπ‘™||ξ‚΅πœŽ(𝑣)𝑑𝑣=π’ͺ𝛽(𝜚)(3.15),(3.35)=π’ͺ(1),(3.50) where 𝐢 is the constant given by (3.2d).
Similarly, from (3.2d) and since |π‘‡ξ…žπ‘™(𝑣)|≀1, we have ||||ξ€œπ‘’πœ€ξ€·π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€Έξ€·π‘‡(𝑣)βˆ’π‘βˆ’πœƒπ‘™,πœŽπ‘‡(𝑣)βˆ’π‘ξ€Έξ€Έξ…žπ‘™(𝑣)πœ•π‘£π‘“πœšξ€·π‘‘,π‘₯,𝑇𝑙||||≀𝐢(𝑣)π‘‘π‘£ξ€œπ›½(𝜌)π‘™βˆ’π‘™||π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€Έξ€·π‘‡(𝑣)βˆ’π‘βˆ’πœƒπ‘™,πœŽξ€Έ||ξ‚΅πœš(𝑣)βˆ’π‘π‘‘π‘£=π’ͺ𝛽(𝜚)(3.15)=π’ͺ(1),(3.51) from which we conclude that Ξ“32,πœ€ is bounded in 𝐿2loc. From assumptions (3.15) and (3.35), as well as for the estimates (3.46)–(3.51), it follows that the expression from (3.43) is bounded in 𝐿2loc from which it follows that Ξ“2,πœ€βˆˆπ»βˆ’1loc,𝑐.
The next term is Ξ“3,πœ€=ξ€œπ‘’πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€Έπ‘‡(𝑣)βˆ’π‘ξ…žπ‘™,𝜎(𝑣)divπ‘₯πœ•π‘£π‘“πœš(𝑑,π‘₯,𝑣)π‘‘π‘£βˆ’π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έπ‘‡βˆ’π‘ξ…žπ‘™,πœŽξ€·π‘’πœ€ξ€Έdivπ‘₯π‘“πœš(𝑑,π‘₯,𝑣)βˆ£π‘£=π‘’πœ€.(3.52) According to (H4), it is clear that Ξ“3,πœ€βˆˆβ„³lπ‘œπ‘,𝐡. Indeed, since |π‘ˆξ…žπœŒ|,|π‘‡ξ…žπ‘™,𝜎|≀1 we have from (3.2b) and (3.2e) 𝐑+×𝐑𝑑||Ξ“3,πœ€||ξ€œπ‘‘π‘₯𝑑𝑑≀𝐑𝐢31+|𝑣|1+𝛼𝐢𝑑𝑣+1≀𝐾6(3.53) for a constant 𝐾6, implying the claim.
Next, we claim that Ξ“4,πœ€=𝑑𝑖=1𝐷π‘₯π‘–ξ€·πœ€π·π‘₯π‘–π‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘+π›Ώπ·π‘’ξ€Ίπ‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έπœ•βˆ’π‘ξ€Έξ€»2π‘₯𝑖π‘₯π‘–π‘’πœ€ξ€Έβˆˆπ»βˆ’1loc,𝑐.(3.54) Due to a priori estimates (3.8) and (3.9) and, again, the fact that |π‘‡ξ…žπ‘™,𝜎|,|π‘ˆξ…žπœŒ|≀1, we see that for every 𝑖=1,…,π‘‘πœ€π·π‘₯π‘–π‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘+π›Ώπ·π‘’ξ€Ίπ‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έπœ•βˆ’π‘ξ€Έξ€»2π‘₯𝑖π‘₯π‘–π‘’πœ€βŸΆ0(3.55) in 𝐿2(𝐑+×𝐑𝑑). Therefore, Ξ“4,πœ€βˆˆπ»βˆ’1loc,𝑐.
Further, we claim that Ξ“5,πœ€=πœ€π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έπ‘‡βˆ’π‘ξ…žξ…žπ‘™,πœŽξ€·π‘’πœ€ξ€Έ||βˆ‡π‘’πœ€||2βˆˆβ„³loc,𝐡.(3.56) Since |π‘ˆξ…žπœŒ|≀1 and |π‘‡ξ…žξ…žπ‘™,𝜎|≀1𝜎 we have from (3.30) (recall (3.28) for the definition of the constants 𝐾𝑗 for 𝑗=3,4,5) πœ€ξ€œπ‘+×𝐑𝑑||π‘ˆξ…žπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έπ‘‡βˆ’π‘ξ…žξ…žπ‘™,πœŽξ€·π‘’πœ€ξ€Έ||||βˆ‡π‘’πœ€||2β‰€πœ€π‘‘π‘₯π‘‘π‘‘πœŽξ€œ||𝑒𝑙<πœ€||<𝑙+𝜎||βˆ‡π‘’πœ€||2𝑑π‘₯𝑑𝑑≀(3.30)𝐾5+𝛿2𝜎2πœ€4+𝛿2𝜎2(𝛽(𝜚))2πœ€4ξ‚Ά1/2𝐾3𝐾4≀𝐾6,(3.57) for some constant 𝐾6, according to assumptions (3.15) and (3.35) on 𝛿=𝛿(πœ€), 𝜎=𝜎(πœ€), 𝜚=𝜚(πœ€), and 𝛽(𝜚)=𝛽(πœ€3). Thus, we see that Ξ“5,πœ€βˆˆβ„³loc,𝐡.
Next, we need to show Ξ“6,πœ€=𝛿𝑑𝑖=1𝐷2π‘’π‘’ξ€Ίπ‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έπœ•βˆ’π‘ξ€Έξ€»π‘₯π‘–π‘’πœ€πœ•2π‘₯𝑖π‘₯π‘–π‘’πœ€βˆˆβ„³lπ‘œπ‘,𝐡.(3.58) In view of a priori estimates (3.8) and (3.9), and assumptions (3.15) and (3.35), it holds 𝐑+×𝐑𝑑𝛿|||||𝑑𝑖=1𝐷2π‘’π‘’ξ€Ίπ‘ˆπœŒξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έπœ•βˆ’π‘ξ€Έξ€»π‘₯π‘–π‘’πœ€πœ•2π‘₯𝑖π‘₯π‘–π‘’πœ€|||||≀𝑑π‘₯𝑑𝑑𝑑𝑖=1ξ‚΅π›ΏπœŽ+π›ΏπœŒξ€ξ‚Άξ‚΅π‘+×𝐑𝑑||πœ•π‘₯π‘–π‘’πœ€||2𝑑π‘₯𝑑𝑑1/2𝐑+×𝐑𝑑||πœ•2π‘₯𝑖π‘₯π‘–π‘’πœ€||2𝑑π‘₯𝑑𝑑1/2β‰€ξ‚΅π›Ώπœ€2𝜎+π›Ώπœ€2πœŒξ‚Άπ‘‘ξ“π‘–=1ξ‚΅πœ€ξ€œπ‘+×𝐑𝑑||πœ•π‘₯π‘–π‘’πœ€||2𝑑π‘₯𝑑𝑑1/2ξ‚΅πœ€3ξ€œπ‘+×𝐑𝑑||πœ•2π‘₯𝑖π‘₯π‘–π‘’πœ€||2𝑑π‘₯𝑑𝑑1/2≀𝐾7ξ‚΅π›Ώπœ€2𝜎+π›Ώπœ€2πœŒπœ€ξ‚Άξ‚΅πœš+1(𝛽(𝜚))2ξ‚Ά1/2≀𝐾8,(3.59) for some constants 𝐾7 and 𝐾8. The second estimate holds since π‘ˆπœŒξ…žξ…žβ‰€1/𝜌 and π‘‡ξ…žξ…žπ‘™,πœŽβ‰€1/𝜎 implying |𝐷𝑒𝑒[π‘ˆπœŒ(𝑇𝑙,𝜎(π‘’πœ€)βˆ’π‘)]|≀(1/𝜎+1/𝜌). Therefore, Ξ“6,πœ€βˆˆβ„³loc,𝐡.
Finally, we will prove that Ξ“7πœ€=βˆ’πœ€π‘ˆπœŒξ…žξ…žξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘‡βˆ’π‘ξ€Έξ€·ξ…žπ‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έ2||βˆ‡π‘’πœ€||2βˆˆβ„³loc,𝐡.(3.60) First, notice that suppπ‘ˆπœŒξ…žξ…ž=(0,𝜚), and therefore π‘ˆπœŒξ…žξ…žξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘β‰ 0for𝑐≀𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έβ‰€π‘+𝜌.(3.61) Assume first that |𝑐|>𝑙. Since we can choose 𝜌=𝜎 (see (3.35)) arbitrarily small, we can assume that |𝑐|>𝑙+𝜎. In that case π‘ˆπœŒξ…žξ…ž(𝑇𝑙,𝜎(π‘’πœ€)βˆ’π‘)β‰ 0 only if 𝑙+πœŽβ‰€π‘‡π‘™,𝜎(π‘’πœ€)≀𝑙+𝜎+𝜌 which is never fulfilled according to the definition of 𝑇𝑙,𝜎 (see (3.22)). So, in this case, Ξ“7πœ€β‰‘0βˆˆβ„³loc,𝐡.(3.62)
Next we assume that |𝑐|<𝑙. As before, we can assume that |𝑐|<π‘™βˆ’πœŒ since we can choose 𝜌=𝜎 arbitrarily small. From (3.61), we see that π‘ˆπœŒξ…žξ…ž(𝑇𝑙,𝜎(π‘’πœ€)βˆ’π‘)β‰ 0 if βˆ’π‘™β‰€π‘β‰€π‘‡π‘™,𝜎(π‘’πœ€)≀𝑐+πœŒβ‰€π‘™ implying that π‘ˆπœŒξ…žξ…ž(𝑇𝑙,𝜎(π‘’πœ€)βˆ’π‘)=π‘ˆπœŒξ…žξ…ž(π‘’πœ€βˆ’π‘). Thus, Ξ“7πœ€=βˆ’πœ€π‘ˆπœŒξ…žξ…žξ€·π‘’πœ€ξ€Έ||βˆ’π‘βˆ‡π‘’πœ€||2βˆˆβ„³loc,𝐡,(3.63) according to (3.30) (we put there 𝑙=𝑐).
Finally, assume that |𝑐|=𝑙. From (3.61) and (3.19), we conclude ξ€·π‘‡ξ…žπ‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έ2π‘ˆπœŒξ…žξ…žξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έξ€·βˆ’π‘™β‰ 0iff𝑙≀𝑇𝑙,πœŽξ€·π‘’πœ€ξ€Έβ‰€π‘™+𝜌andπ‘’πœ€ξ€Έξ€·β‰€π‘™+𝜎iο¬€π‘™β‰€π‘’πœ€ξ€Έ.≀𝑙+𝜎(3.64) From here and since |π‘‡ξ…žπ‘™,𝜎|≀1, it follows (recall that we assume 𝜌=𝜎) ξ€Ξ π‘‘πœ€π‘ˆπœŒξ…žξ…žξ€·π‘‡π‘™,πœŽξ€·π‘’πœ€ξ€Έπ‘‡βˆ’π‘ξ€Έξ€·ξ…žπ‘™,πœŽξ€·π‘’πœ€ξ€Έξ€Έ2||βˆ‡π‘’πœ€||2πœ€π‘‘π‘₯π‘‘π‘‘β‰€πœŽξ€Ξ π‘‘βˆ©ξ€½||𝑒𝑙<πœ€||ξ€Ύ<𝑙+𝜎||βˆ‡π‘’πœ€||2𝑑π‘₯𝑑𝑑<∞,(3.65) according to (3.30). From here, (3.62) and (3.63), we conclude (3.60).
Collecting the previous items, due to the properties of Γ𝑖,πœ€, 𝑖=1,…,7, it follows from (3.33) that πœ•π‘‘πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘‡βˆ’π‘ξ€Έξ€·π‘™ξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘+divπ‘₯πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€ξ€Έξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)βˆˆβ„³loc,𝐡+π»βˆ’1loc,𝑐.(3.66) Therefore, we see that (ii) is satisfied and we can use Murat's lemma to conclude that πœ•π‘‘πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘‡βˆ’π‘ξ€Έξ€·π‘™ξ€·π‘’πœ€ξ€Έξ€Έβˆ’π‘+divπ‘₯πœƒξ€·π‘‡π‘™ξ€·π‘’πœ€ξ€Έπ‘“ξ€·βˆ’π‘ξ€Έξ€·π‘‘,π‘₯,π‘‡π‘™ξ€·π‘’πœ€ξ€Έξ€Έξ€Έβˆ’π‘“(𝑑,π‘₯,𝑐)βˆˆπ»βˆ’1loc,𝑐.(3.67) Thus we conclude that the conditions of Theorem 3.3 are satisfied, and we find that for every 𝑙>0 the sequence (𝑇𝑙(π‘’πœ€))πœ€>0 is precompact in 𝐿1lπ‘œπ‘(𝐑+×𝐑).
Since the sequence (π‘’πœ€)πœ€>0 is uniformly bounded in 𝐿2(𝐑+×𝐑𝑑), from [23, Lemma 7], we conclude that (π‘’πœ€)πœ€>0 is precompact in 𝐿1lπ‘œπ‘(𝐑+×𝐑𝑑).

4. The One-Dimensional Case

We will analyze the convergence of the sequence (π‘’πœ€)πœ€>0 of solutions to (3.5)–(3.6) in the one dimensional case. Unlike the situation we had in the previous section, we will assume that the flux is continuously differentiable with respect to 𝑒. This will enable us to optimize the ratio 𝛿/πœ€2. We will work under the following assumptions on the flux 𝑓=𝑓(𝑑,π‘₯,𝑒) denoted (H4ξ…ž).

(H4aξ…ž) For the flux 𝑓=𝑓(𝑑,π‘₯,𝑒) we assume that π‘“βˆˆπΆ1(𝐑;𝐡𝑉(𝐑+×𝐑π‘₯))∩𝐿∞(𝐑×𝐑+×𝐑π‘₯) and πœ•π‘’π‘“βˆˆπΏβˆž(𝐑×𝐑+×𝐑π‘₯).

(H4bξ…ž) There exists a sequence (π‘“πœš)𝜚>0 defined on 𝐑+×𝐑×𝐑, smooth in (𝑑,π‘₯)βˆˆπ‘+×𝐑, and continuously differentiable in π‘’βˆˆπ‘, satisfying for some 𝑝>2 and every 𝑙>0:

max|𝑧|≀𝑙||π‘“πœš||(𝑑,π‘₯,𝑧)βˆ’π‘“(𝑑,π‘₯,𝑧)⟢0,𝜚⟢0in𝐿𝑝loc𝐑+ξ€Έ,×𝐑𝐑+×𝐑||πœ•π‘₯π‘“πœš||𝐢(𝑑,π‘₯,𝑒)𝑑π‘₯𝑑𝑑≀11+|𝑒|1+𝛼,𝐑+Γ—π‘πœš||πœ•π‘₯π‘“πœš||(𝑑,π‘₯,𝑒)2𝐢𝑑π‘₯𝑑𝑑≀2(𝑑,π‘₯),𝐑+×𝐑||πœ•2π‘₯π‘’π‘“πœš||𝐢(𝑑,π‘₯,𝑒)𝑑π‘₯𝑑𝑑≀31+|𝑒|1+𝛼,||πœ•π‘’π‘“πœš(||𝑑,π‘₯,𝑒)≀𝐢,(4.1) where 𝐢𝑖, 𝑖=1,2,3, and 𝐢 are constants independent on (𝑑,π‘₯,𝑒)βˆˆπ‘+×𝐑𝑑×𝐑.

Under these assumptions we will prove the following.

(i)Without assuming nondegeneracy of the flux, the sequence (π‘’πœ€)πœ€>0 converges along a subsequence to a solution of (3.1)–(11) in the distributional sense when 𝛿=π’ͺ(πœ€2) and 𝜚=π’ͺ(πœ€) (less stringent assumptions than in the multidimensional case).(ii)If, in addition, we assume π‘“βˆˆπΆ2(𝐑;𝐡𝑉(𝐑+×𝐑π‘₯))∩𝐿∞(𝐑×𝐑+×𝐑π‘₯), and that 𝑓 is genuinely nonlinear in the sense of (4.12), the sequence (π‘’πœ€)πœ€>0 of solutions of problem (3.5)–(3.6) is strongly precompact in 𝐿1loc(𝐑+×𝐑) when 𝛿=π’ͺ(πœ€2).

Remark 4.1. The proof relies on a priori inequalities (3.8) and (3.9). Notice that thanks to (H4aξ…ž), we can take 𝛽(𝜚)=1 in inequality (3.9).

We will need the fundamental theorem of Young measures.

Theorem 4.2 (see [24]). Assume that the sequence (π‘’πœ€π‘˜) is uniformly bounded in 𝐿𝑝loc(𝐑+×𝐑𝑑)), 𝑝β‰₯1. Then, there exists a subsequence (not relabeled) (π‘’πœ€π‘˜) and a sequence of probability measures 𝜈(𝑑,π‘₯)βˆˆβ„³(𝐑),(𝑑,π‘₯)βˆˆπ‘+×𝐑𝑑(4.2) such that the limit 𝑔(𝑑,π‘₯)∢=limπ‘˜β†’βˆžπ‘”ξ€·π‘‘,π‘₯,π‘’πœ€π‘˜ξ€Έ(𝑑,π‘₯)(4.3) exists in the distributional sense for all 𝑔 measurable with respect to (𝑑,π‘₯)βˆˆπ‘+×𝐑𝑑, continuous in π‘’βˆˆπ‘ and satisfying uniformly in (𝑑,π‘₯): ||||𝑔(𝑑,π‘₯,𝑒)≀𝐢(1+|𝑒|π‘ž),(4.4) for a constant 𝐢 independent of 𝑒, and π‘ž such that 0β‰€π‘ž<𝑝. The limit is represented by the expectation value ξ€œπ‘”(𝑑,π‘₯)=𝐑+×𝐑𝑑𝑔(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)(πœ†),(4.5) for almost all points (𝑑,π‘₯)βˆˆπ‘+×𝐑𝑑.
One refers to such a sequence of measures 𝜈=(𝜈(𝑑,π‘₯)) as the Young measures associated to the sequence (π‘’πœ€π‘˜)π‘˜βˆˆπ.
Furthermore, π‘’πœ€π‘˜βŸΆπ‘’inπΏπ‘Ÿloc𝐑+×𝐑𝑑,1β‰€π‘Ÿ<𝑝,(4.6) if and only if πœˆπ‘¦=𝛿𝑒(𝑦)π‘Ž.𝑒.(4.7)

Before we continue, we need to recall the celebrated Div-Curl lemma.

Lemma 4.3 (Div-Curl). Let π‘„βŠ‚π‘2 be a bounded domain, and suppose that 𝑣1πœ€β‡€π‘£1,𝑣2πœ€β‡€π‘£2,𝑀1πœ€β‡€π‘€1,𝑀2πœ€β‡€π‘€2,(4.8) in 𝐿2(𝑄) as πœ€β†“0. Assume also that the two sequences {div(𝑣1πœ€,𝑣2πœ€)}πœ€>0 and {curl(𝑀1πœ€,𝑀2πœ€)}πœ€>0 lie in a (common) compact subset of π»βˆ’1loc(𝑄), where div(𝑣1πœ€,𝑣2πœ€)=πœ•π‘₯1𝑣1πœ€+πœ•π‘₯2𝑣2πœ€ and curl(𝑀1πœ€,𝑀2πœ€)=πœ•π‘₯1𝑀2πœ€βˆ’πœ•π‘₯2𝑀1πœ€. Then along a subsequence 𝑣1πœ€,𝑣2πœ€ξ€Έβ‹…ξ€·π‘€1πœ€,𝑀2πœ€ξ€ΈβŸΆξ‚€π‘£1,𝑣2⋅𝑀1,𝑀2inπ’Ÿξ…ž(Q)asπœ€β†“0.(4.9)

Lemma 4.4. Assume that (π‘’πœ€)πœ€>0∈𝐿2(𝐑+×𝐑) converges weakly in 𝐿2(𝐑+×𝐑) to a function π‘’βˆˆπΏ2(𝐑+×𝐑). Assume that πœ‚(𝑑,π‘₯,πœ†), (𝑑,π‘₯,πœ†)βˆˆπ‘+×𝐑2, is a function satisfying (4.4) with π‘ž=2 such that πœ‚βˆˆπΆ2(π‘πœ†;πΏβˆžβˆ©π΅π‘‰(𝐑+𝑑×𝐑π‘₯)).
By πœ‚π‘› one denotes the truncation of the function πœ‚: πœ‚π‘›ξƒ―||πœ†||||πœ†||(𝑑,π‘₯,πœ†)=πœ‚(𝑑,π‘₯,πœ†),<𝑛,0,>2𝑛,(𝑑,π‘₯)βˆˆπ‘+×𝐑,(4.10) and π‘žπ‘›(𝑑,π‘₯,πœ†) the corresponding entropy flux.
If for every π‘›βˆˆπ one has div(𝑑,π‘₯)ξ€·πœ‚π‘›ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ,π‘žπ‘›ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έξ€Έβˆˆπ»βˆ’1loc,𝑐𝐑+ξ€Έ,×𝐑(4.11) then the limit function 𝑒 is a weak solution of (1.3).
Furthermore, if the flux function 𝑓=𝑓(𝑑,π‘₯,πœ†) is twice differentiable with respect to πœ†, and is genuinely nonlinear, that is, for every (𝑑,π‘₯)βˆˆπ‘+×𝐑𝑑 the mapping π‘βˆ‹πœ†βŸΌπœ•πœ†f(t,x,πœ†)isnonconstant(4.12) on nondegenerate intervals, then (π‘’πœ€)πœ€>0 converges strongly along a subsequence to 𝑒 in 𝐿1loc(𝐑+×𝐑).

Proof. We will apply the method of compensated compactness as in [13].
First, notice that according to Theorem 4.2 there exist a subsequence (π‘’πœ€π‘˜)βŠ‚(π‘’πœ€) and a sequence of probability measures 𝜈(𝑑,π‘₯)βˆˆβ„³(𝐑),(𝑑,π‘₯)βˆˆπ‘+×𝐑(4.13) such that the limit 𝑔(𝑑,π‘₯)∢=limπ‘˜β†’βˆžπ‘”ξ€·π‘‘,π‘₯,π‘’πœ€π‘˜ξ€Έ(𝑑,π‘₯)(4.14) exists in the distributional sense for all 𝑔 measurable with respect to (𝑑,π‘₯)βˆˆπ‘+×𝐑, continuous in π‘’βˆˆπ‘, and satisfying (4.4) for some π‘žβˆˆπ‘ such that 0β‰€π‘ž<𝑝, and is represented by the expectation value ξ€œπ‘”(𝑑,π‘₯)=𝐑+×𝐑𝑔(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)(πœ†),(4.15) for almost all points (𝑑,π‘₯)βˆˆπ‘+×𝐑. Next, notice that the function 𝑓 satisfies (4.4) for π‘ž=1. Indeed, from (H4aξ…ž), it follows πœ•π‘’|𝑓|=sgn(𝑓)πœ•π‘’π‘“β‰€πΆ, and from here |𝑓|≀𝐢(1+|𝑒|), for a constant 𝐢 which depends on the constant 𝐢 and the 𝐿∞ bound of the function 𝑓. From this, we conclude that for the flux function 𝑓(𝑑,π‘₯,𝑣) we have limπ‘˜β†’βˆžπ‘“ξ€·π‘‘,π‘₯,π‘’πœ€π‘˜(ξ€Έ=ξ€œπ‘‘,π‘₯)𝐑+×𝐑𝑓(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)(πœ†).(4.16)
To continue, notice that ξ€œπ‘’(𝑑,π‘₯)=πœ†π‘‘πœˆ(𝑑,π‘₯)(πœ†).(4.17)
Take πœ‚(𝑒)=𝐼(𝑒)=𝑒 in (4.10), and consider the vector fields (𝐼𝑛(π‘’πœ€),𝑓𝑛(𝑑,π‘₯,π‘’πœ€)) where πœ•πœ†π‘“π‘›(𝑑,π‘₯,π‘’πœ€)=πΌξ…žπ‘›(𝑣)πœ•πœ†π‘“(𝑑,π‘₯,π‘’πœ€), and (βˆ’πœ“π‘›(𝑑,π‘₯,π‘’πœ€),πœ™π‘›(π‘’πœ€)), where πœ™βˆˆπΆ1(𝐑) is an arbitrary entropy, and πœ“π‘› is the entropy flux corresponding to πœ™π‘›. Here 𝐼𝑛 and πœ™π‘› denote the smooth truncation functions of 𝐼 and πœ™, respectively (cf. (4.10)).
According to (4.11), we can apply the Div-Curl lemma on the given vector fields. Hence, we get after letting πœ€β†’0 along a subsequence: ξ€œξ€·πΌπ‘›(πœ†)πœ“π‘›(𝑑,π‘₯,πœ†)βˆ’πœ™π‘›(πœ†)𝑓𝑛(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)(=ξ€œξ‚€πœ†)𝑒𝑛(𝑑,π‘₯)πœ“π‘›(𝑑,π‘₯,πœ†)βˆ’π‘“π‘›(𝑑,π‘₯)πœ™π‘›ξ‚(πœ†)π‘‘πœˆ(𝑑,π‘₯)(πœ†),(4.18) where 𝑓𝑛(ξ€œπ‘“π‘‘,π‘₯)=𝑛(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)(πœ†),𝑒𝑛(ξ€œπΌπ‘‘,π‘₯)=𝑛(πœ†)π‘‘πœˆ(𝑑,π‘₯)(πœ†).(4.19)
Then, put πœ™(πœ†)=|πœ†βˆ’π‘’(𝑑,π‘₯)|. Notice that for |πœ†|<𝑛 it holds πœ“π‘›(𝑑,π‘₯,πœ†)=sgn(πœ†βˆ’π‘’(𝑑,π‘₯))(𝑓(𝑑,π‘₯,πœ†)βˆ’π‘“(𝑑,π‘₯,𝑒(𝑑,π‘₯))). Therefore, we have from (4.18) ξ€œπ‘›βˆ’π‘›ξ€·||||ξ€Έπœ†sgn(πœ†βˆ’π‘’(𝑑,π‘₯))(𝑓(𝑑,π‘₯,πœ†)βˆ’π‘“(𝑑,π‘₯,𝑒(𝑑,π‘₯)))βˆ’π‘’(𝑑,π‘₯)βˆ’πœ†π‘“(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)βˆ’ξ€œ(πœ†)π‘›βˆ’π‘›ξ‚€||||𝑒(𝑑,π‘₯)sgn(πœ†βˆ’π‘’(𝑑,π‘₯))(𝑓(𝑑,π‘₯,πœ†)βˆ’π‘“(𝑑,π‘₯,𝑒(𝑑,π‘₯)))βˆ’π‘’(𝑑,π‘₯)βˆ’πœ†π‘“π‘›ξ‚π‘‘πœˆ(𝑑,π‘₯)ξ‚΅ξ€œ(πœ†)=βˆ’βˆ’π‘›βˆ’βˆž+ξ€œβˆžπ‘›ξ‚Άξ€·πΌπ‘›(πœ†)πœ“π‘›(𝑑,π‘₯,πœ†)βˆ’πœ™π‘›(πœ†)𝑓𝑛(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)+ξ‚΅ξ€œ(πœ†)βˆ’π‘›βˆ’βˆž+ξ€œβˆžπ‘›ξ‚Άξ‚€π‘’(𝑑,π‘₯)πœ“π‘›(𝑑,π‘₯,πœ†)βˆ’π‘“π‘›πœ™π‘›(ξ‚πœ†)π‘‘πœˆ(𝑑,π‘₯)(+ξ‚΅ξ€œπœ†)βˆ’π‘›βˆ’βˆž+ξ€œβˆžπ‘›ξ‚Άξ€·πΌπ‘›ξ€Έ(πœ†)βˆ’πœ†π‘‘πœˆ(𝑑,π‘₯)ξ€œπœ“(πœ†)𝑛(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)(πœ†).(4.20) It is clear that for every fixed (𝑑,π‘₯)βˆˆπ‘+×𝐑𝑑 the right-hand side of (4.20) tends to zero as π‘›β†’βˆž implying (due to the Lebesgue dominated convergence theorem) ξ€œξ€·||||ξ€Έπœ†sgn(πœ†βˆ’π‘’(𝑑,π‘₯))(𝑓(𝑑,π‘₯,πœ†)βˆ’π‘“(𝑑,π‘₯,𝑒(𝑑,π‘₯)))βˆ’π‘’(𝑑,π‘₯)βˆ’πœ†π‘“(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)(βˆ’ξ€œβˆ’||||πœ†)(𝑒(𝑑,π‘₯)sgn(πœ†βˆ’π‘’(𝑑,π‘₯))(𝑓(𝑑,π‘₯,πœ†)βˆ’π‘“(𝑑,π‘₯,𝑒(𝑑,π‘₯)))𝑒(𝑑,π‘₯)βˆ’πœ†ξ‚π‘“(𝑑,π‘₯)π‘‘πœˆ(𝑑,π‘₯)(πœ†)=0inπ’Ÿξ…žξ€·π‘+×𝐑𝑑.(4.21) Now, a standard procedure gives (see, e.g., [6, Remark 2.3]) 𝑓(𝑑,π‘₯,𝑒(𝑑,π‘₯))βˆ’ξ‚ξ€œ||||𝑓(𝑑,π‘₯)πœ†βˆ’π‘’(𝑑,π‘₯)π‘‘πœˆ(𝑑,π‘₯)(πœ†)=0,(4.22) where βˆ«π‘“(𝑑,π‘₯)=𝑓(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)(πœ†). From here, it follows that 𝑒 is a weak solution to (3.1). This concludes the first part of the lemma. For the details of the procedure one should consult, for example, [13].
Now, assume that π‘“βˆˆπΆ2(𝐑;𝐡𝑉(𝐑+×𝐑π‘₯))∩𝐿∞(𝐑×𝐑+×𝐑π‘₯), and that it is genuinely nonlinear in the sense of (4.12).
Then, take arbitrary entropies πœ‚1(𝑑,π‘₯,𝑒)∈𝐢1((𝐑;πΏβˆžβˆ©π΅π‘‰(𝐑+𝑑×𝐑π‘₯))) and πœ‚2∈𝐢1(𝐑), and denote by π‘ž1(𝑑,π‘₯,𝑒) and π‘ž2(𝑒), respectively, their corresponding entropy fluxes. Assume that πœ‚π‘–, π‘žπ‘–, πœ‚π‘–π‘žπ‘–, 𝑖=1,2, satisfy (4.4) for π‘ž<2. Notice that πœ•π‘’πœ‚1 depends explicitly on (𝑑,π‘₯), while π·π‘’πœ‚2 does not. Denote by πœ‚1,𝑛 and πœ‚2,𝑛 the appropriate smooth truncations (cf. (4.10)) and by π‘ž1,𝑛 and π‘ž2,𝑛 the corresponding entropy fluxes, that is, π‘ž1,π‘›ξ€œ(𝑑,π‘₯,πœ†)=πœ†πœ•π‘§πœ‚1,𝑛(𝑑,π‘₯,𝑧)πœ•π‘§π‘žπ‘“(𝑑,π‘₯,𝑧)𝑑𝑧,1,π‘›ξ€œ(𝑑,π‘₯,πœ†)=πœ†πœ•π‘§πœ‚2,𝑛(𝑧)πœ•π‘§π‘“(𝑑,π‘₯,𝑧)𝑑𝑧.(4.23) Due to (4.11) and the Div-Curl lemma the following commutation relation holds: ξ€œπ‘ξ€·πœ‚1,𝑛(𝑑,π‘₯,πœ†)π‘ž2,𝑛(𝑑,π‘₯,πœ†)βˆ’πœ‚2(πœ†)π‘ž1,𝑛(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)=ξ€œπ‘πœ‚1,𝑛(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)ξ€œπ‘π‘ž2,𝑛(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)βˆ’ξ€œπ‘πœ‚2,𝑛(πœ†)π‘‘πœˆ(𝑑,π‘₯)ξ€œπ‘π‘ž1,𝑛(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯).(4.24) Letting π‘›β†’βˆž as in (4.20), we get ξ€œπ‘ξ€·πœ‚1(𝑑,π‘₯,πœ†)π‘ž2(𝑑,π‘₯,πœ†)βˆ’πœ‚2(πœ†)π‘ž1(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)=ξ€œπ‘πœ‚1(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)ξ€œπ‘π‘ž2(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯)βˆ’ξ€œπ‘πœ‚2(πœ†)π‘‘πœˆ(𝑑,π‘₯)ξ€œπ‘π‘ž1(𝑑,π‘₯,πœ†)π‘‘πœˆ(𝑑,π‘₯).(4.25)
Next, recall that the function 𝑓 satisfies (4.4) for π‘ž=1. Therefore, the following entropy-entropy fluxes are admissible: πœ‚1(𝑑,π‘₯,πœ†)=𝑓(𝑑,π‘₯,πœ†)βˆ’π‘“(𝑑,π‘₯,𝑒(𝑑,π‘₯)),π‘ž1ξ€œ(𝑑,π‘₯,πœ†)=πœ†π‘’(𝑑,π‘₯)ξ€·πœ•π‘£ξ€Έπ‘“(𝑑,π‘₯,𝑣)2πœ‚π‘‘π‘£,2(πœ†)=πœ†βˆ’π‘’(𝑑,π‘₯),π‘ž2(𝑑,π‘₯,πœ†)=𝑓(𝑑,π‘₯,πœ†)βˆ’π‘“(𝑑,π‘₯,𝑒(𝑑,π‘₯)).(4.26) Then, following [6], we insert the last quantities in (4.25) which yields the following relation: ξ‚΅ξ€œπ‘(𝑓(𝑑,π‘₯,πœ†)βˆ’π‘“(𝑑,π‘₯,𝑒(𝑑,π‘₯)))π‘‘πœˆ(𝑑,π‘₯)ξ‚Ά2+ξ€œπ‘ξ‚΅ξ€œ(πœ†βˆ’π‘’(𝑑,π‘₯))πœ†π‘’(𝑑,π‘₯)ξ€·πœ•πœšξ€Έπ‘“(𝑑,π‘₯,𝜚)2π‘‘πœšβˆ’(𝑓(𝑑,π‘₯,πœ†)βˆ’π‘“(𝑑,π‘₯,𝑒))2ξ‚Άπ‘‘πœˆ(𝑑,π‘₯)(πœ†)=0.(4.27) By the Cauchy–Schwarz inequality (𝑓(𝑑,π‘₯,πœ†)βˆ’π‘“(𝑑,π‘₯,𝑒))2=ξ‚΅ξ€œπœ†π‘’(𝑑,π‘₯)πœ•πœšξ‚Άπ‘“(𝑑,π‘₯,𝜚)π‘‘πœš2ξ€œβ‰€(πœ†βˆ’π‘’(𝑑,π‘₯))πœ†π‘’(𝑑,π‘₯)ξ€Ίπœ•πœšξ€»π‘“(𝑑,π‘₯,𝜚)2π‘‘πœšπ‘‘πœˆ(𝑑,π‘₯)(πœ†),(4.28) with the equality only if 𝑓(𝑑,π‘₯,𝜚) is constant for all 𝜚 between 𝑒(𝑑,π‘₯) and πœ†. Still, this is not possible according to the genuine nonlinearity condition (4.12). Thus, from this and (4.27), we conclude that ξ€œ(πœ†βˆ’π‘’(𝑑,π‘₯))πœ†π‘’(𝑑,π‘₯)ξ€Ίπœ•πœšξ€»π‘“(𝑑,π‘₯,𝜚)2π‘‘πœšπ‘‘πœˆ(𝑑,π‘₯)(πœ†)=0,(4.29) that is, that 𝜈(𝑑,π‘₯)=𝛿𝑒(𝑑,π‘₯) a.e. on 𝐑+×𝐑 implying strong 𝐿1loc convergence of (π‘’πœ€)πœ€>0 along a subsequence (see Theorem 4.2).

Now we are ready to prove the main theorem of the section.

Theorem 4.5. Assume that ξ€·πœ€π›Ώ=𝛿(πœ€)=π’ͺ2ξ€Έ,𝜚=π’ͺ(πœ€),πœ€β†’0,(4.30) and 𝑒0∈𝐻1(𝐑).
Assume that the flux function 𝑓 from (3.1) with 𝑑=1 satisfies (H4ξ…ž). Assume also that the function 𝑏 from (3.5) satisfies (H1) and (H2). Then a subsequence of solutions (π‘’πœ€π‘˜)βŠ‚(π‘’πœ€) of problem (3.5)–(3.6) converges in the sense of distributions to a weak solution of problem (3.1).
If the flux function π‘“βˆˆπΆ2(𝐑;𝐡𝑉(𝐑+×𝐑π‘₯))∩𝐿∞(𝐑×𝐑+×𝐑π‘₯), and if it is genuinely nonlinear in the sense of (4.12), then a subsequence of solutions (π‘’πœ€π‘˜)βŠ‚(π‘’πœ€) of problem (3.5)–(3.6) converges strongly in 𝐿1(𝐑+×𝐑) to a weak solution of (3.1).

Proof. Assume that πœ‚(𝑑,π‘₯,πœ†), (𝑑,π‘₯,πœ†)βˆˆπ‘+×𝐑2 is a function such that πœ‚βˆˆπΆ2(𝐑;πΏβˆžβˆ©π΅π‘‰(𝐑+𝑑×𝐑π‘₯)). As usual, denote by πœ‚π‘› the truncation given by (4.10), and let the entropy flux corresponding to πœ‚π‘› and 𝑓 be π‘žπ‘›ξ€œ(𝑑,π‘₯,𝑒)=π‘’πœ•π‘£πœ‚π‘›(𝑑,π‘₯,𝑣)πœ•π‘£π‘“(𝑑,π‘₯,𝑣)𝑑𝑣.(4.31)
According to Lemma 4.4, it is enough to prove that for every fixed π‘›βˆˆπ the expression div(πœ‚π‘›(𝑑,π‘₯,π‘’πœ€(𝑑,π‘₯)),π‘žπ‘›(𝑑,π‘₯,π‘’πœ€(𝑑,π‘₯))) is precompact in π»βˆ’1loc(𝐑+×𝐑).
In order to prove the latter, take the following mollifier πœ‚π‘›,πœ€(𝑑,π‘₯,𝑒)=πœ‚π‘›(β‹…,β‹…,𝑒)⋆(1/πœ€1/2)πœ”(𝑑/πœ€1/4)πœ”(π‘₯/πœ€1/4), where πœ” is a nonnegative real function with unit mass. Denote the entropy flux corresponding to πœ‚π‘› and 𝑓 by π‘žπ‘›,πœ€ξ€œ(𝑑,π‘₯,𝑒)=π‘’πœ•π‘£πœ‚π‘›,πœ€(𝑑,π‘₯,𝑣)πœ•π‘£π‘“πœš(𝑑,π‘₯,𝑣)𝑑𝑣.(4.32) Recall that here (and in the sequel) we assume that 𝜚=π’ͺ(πœ€). Actually, we can take 𝜚=πœ€ without loss of generality.
Notice that according to the assumptions on πœ‚ and the choice of the mollifier πœ‚π‘›,πœ€ we have 𝐑+×𝐑||πœ•π‘‘πœ‚π‘›,πœ€(||+||πœ•π‘‘,π‘₯,𝑒)π‘₯πœ‚π‘›,πœ€(||+||πœ•π‘‘,π‘₯,𝑒)π‘₯π‘£πœ‚π‘›,πœ€(||𝐢𝑑,π‘₯,𝑒)𝑑π‘₯𝑑𝑑≀4,𝐑+×𝐑||πœ•π‘₯πœ‚π‘›,πœ€||(𝑑,π‘₯,𝑒)2+||πœ•2π‘₯π‘£πœ‚π‘›,πœ€||(𝑑,π‘₯,𝑒)2𝐢𝑑π‘₯𝑑𝑑≀4πœ€,(4.33) for a constant 𝐢4.
Then, applying (3.17) with 𝑆 replaced by πœ‚π‘›,πœ€, we find π·π‘‘πœ‚π‘›ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ+𝐷π‘₯π‘žπ‘›ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ=ξ€œπ‘’πœ€ξ€·πœ•2π‘₯π‘£π‘“πœš(𝑑,π‘₯,𝑣)πœ•π‘£πœ‚π‘›,πœ€(𝑑,π‘₯,𝑣)+πœ•π‘£π‘“πœš(𝑑,π‘₯,𝑣)πœ•2π‘₯π‘£πœ‚π‘›,πœ€ξ€Έ(𝑑,π‘₯,𝑣)π‘‘π‘£βˆ’πœ•π‘£πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έπœ•π‘₯π‘“πœšξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ+πœ•π‘‘πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ+πœ€π·π‘₯ξ€·πœ•π‘£πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έπ‘ξ€·πœ•π‘₯π‘’πœ€ξ€Έξ€Έβˆ’πœ€πœ•2π‘£π‘£πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έπ‘ξ€·πœ•π‘₯π‘’πœ€ξ€Έπœ•π‘₯π‘’πœ€ξ€·πœ•βˆ’πœ€π‘π‘₯π‘’πœ€ξ€Έπœ•2π‘₯π‘£πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έβˆ’π›Ώπœ•2π‘₯π‘₯π‘’πœ€πœ•2π‘₯π‘£πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ+𝛿𝐷π‘₯ξ€·πœ•π‘£πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έπœ•2π‘₯π‘₯π‘’πœ€ξ€Έβˆ’π›Ώ2πœ•2π‘£π‘£πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έπ·π‘₯ξ€·πœ•π‘₯π‘’πœ€ξ€Έ2+𝐷π‘₯ξ€·βˆ’π‘žπ‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ+π‘žπ‘›ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έξ€Έ+π·π‘‘ξ€·βˆ’πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ+πœ‚π‘›ξ€·π‘‘,π‘₯,π‘’πœ€.ξ€Έξ€Έ(4.34) Now, we apply a similar procedure as in the multidimensional case.
Combining (H4b') and (4.33), we get 𝐑+×𝐑||||ξ€œπ‘’πœ€ξ€·πœ•2π‘₯π‘£π‘“πœš(𝑑,π‘₯,𝑣)πœ•π‘£πœ‚π‘›,πœ€(𝑑,π‘₯,𝑣)+πœ•π‘£π‘“πœš(𝑑,π‘₯,𝑣)πœ•2π‘₯π‘£πœ‚π‘›,πœ€ξ€Έ||||𝐢(𝑑,π‘₯,𝑣)𝑑𝑣𝑑π‘₯𝑑𝑑≀6,(4.35) for a constant 𝐢6, implying boundedness of the subintegral expression in the sense of measures.
Similarly, for a constant 𝐢7𝐑+×𝐑||βˆ’πœ•π‘£πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έπœ•π‘₯π‘“πœšξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έβˆ’πœ•π‘‘πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ||𝐢𝑑π‘₯𝑑𝑑≀7,(4.36) implying boundedness of the subintegral expression in the sense of measures.
Then, combining (4.33) with (3.8) and (3.9) we infer (see estimation of Ξ“6πœ€) that ξ€·πœ•βˆ’πœ€π‘π‘₯π‘’πœ€ξ€Έπœ•2π‘₯π‘£πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έβˆ’π›Ώπœ•2π‘₯π‘₯π‘’πœ€πœ•2π‘₯π‘£πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ(4.37) is bounded in β„³(𝐑+×𝐑).
Next, 𝐷π‘₯ξ€·πœ€πœ•π‘£πœ‚π‘›ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έπ‘ξ€·πœ•π‘₯π‘’πœ€ξ€Έ+π›Ώπœ•π‘£πœ‚π‘›ξ€·π‘‘,π‘₯,π‘’πœ€π‘˜ξ€Έπœ•2π‘₯π‘₯π‘’πœ€π‘˜ξ€Έ(4.38) is precompact in π»βˆ’1(𝐑+×𝐑) since |πœ‚ξ…žπ‘›|<𝐢, 𝛿=π’ͺ(πœ€2), 𝜚=π’ͺ(πœ€), and from (3.8) and (3.9) (see also Remark 4.1) we have ξ€·πœ•πœ€bxuπœ€ξ€Έ+π›Ώπœ•2xxuπœ€βŸΆ0asπœ€βŸΆ0in𝐿2𝐑+ξ€Έ.×𝐑(4.39)
Similarly, by (3.8) and (3.9) (see the estimation of Ξ“6πœ€ again) πœ€πœ•π‘£π‘£πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έπ‘ξ€·πœ•π‘₯π‘’πœ€ξ€Έπœ•π‘₯π‘’πœ€+𝛿2πœ•π‘£π‘£πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έπ·π‘₯ξ€·πœ•π‘₯π‘’πœ€ξ€Έ2βˆˆβ„³loc,𝐡𝐑+ξ€Έ.×𝐑(4.40)
Next, due to (H4bξ…ž) and the well-known properties of the convolution, it holds for a constant 𝐢 independent on πœ€: ||π‘žπ‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έβˆ’π‘žπ‘›ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ||β‰€πΆπœ€βŸΆ0in𝐿2loc𝐑+×𝐑asπœ€βŸΆ0(4.41) for arbitrary 𝑝>0 implying 𝐷π‘₯ξ€·π‘žπ‘›,πœšξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έβˆ’π‘žπ‘›ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έξ€Έβˆˆπ»βˆ’1loc,𝑐.(4.42)
Similarly, it is easy to see that maxβˆ’2𝑛<𝑣<2π‘›ξ€·βˆ’πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ+πœ‚π‘›ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έξ€ΈβŸΆ0in𝐿2𝐑+ξ€Έ,×𝐑(4.43) and thus π·π‘‘ξ€·βˆ’πœ‚π‘›,πœ€ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έ+πœ‚π‘›ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έξ€Έβˆˆπ»π‘βˆ’1𝐑+ξ€Έ.×𝐑(4.44)
From (4.35)–(4.44) and the fact that (πœ‚π‘›(𝑑,π‘₯,π‘’πœ€),π‘žπ‘›(𝑑,π‘₯,π‘’πœ€))∈𝐿∞(𝐑+×𝐑), we conclude using Murat's lemma that ξ€·πœ‚div𝑛𝑑,π‘₯,π‘’πœ€ξ€Έ,π‘žπ‘›ξ€·π‘‘,π‘₯,π‘’πœ€ξ€Έξ€Έβˆˆπ»βˆ’1loc,𝑐𝐑+ξ€Έ.×𝐑(4.45)
Finally, relying on Lemma 4.4 we conclude the proof of the theorem.

Acknowledgments

The work is supported in part by the Research Council of Norway. The work was supported by the Research Council of Norway through the Projects Nonlinear Problems in Mathematical Analysis, Waves In Fluids and Solids, and an Outstanding Young Investigators Award (KHK). This paper was written as part of the the International Research Program on Nonlinear Partial Differential Equations at the Centre for Advanced Study at the Norwegian Academy of Science and Letters in Oslo during the academic year 2008–2009.