Abstract

We prove the existence of weak solution to a semilinear boundary value problem without the Landesman-Lazer condition.

1. Introduction

We consider the nonlinear boundary value problem Δ𝑒+πœ†π‘˜π‘’+𝑔(𝑒)=β„Ž(π‘₯)inΞ©,(1.1)𝑒=0onπœ•Ξ©,(1.2) where Ξ©βŠ‚β„π‘› is open and bounded, β„ŽβˆˆπΏ2(Ξ©), πœ†π‘˜ is a simple eigenvalue of βˆ’Ξ” corresponding to the eigenvector πœ™π‘˜, and the nonlinearity π‘”βˆΆβ„β†’β„ satisfies the following conditions: ||||𝑔(𝑒)βˆ’π‘”(𝑣)≀𝐿|π‘’βˆ’π‘£|(Lipschitzcontinuity)forsomeconstant𝐿>0.(H)

Landesman and Lazer [1] considered the problem (1.1)-(1.2) with continuous function 𝑔 satisfying 𝑔(βˆ’βˆž)<𝑔(πœ‰)<𝑔(∞), where 𝑔(±∞)=limπ‘ β†’Β±βˆžπ‘”(𝑠) exist and are finite. The authors showed that if πœ™π‘˜ is an eigenfunction corresponding to πœ†π‘˜, Ξ©+={π‘₯βˆˆΞ©βˆΆπœ™π‘˜>0} and Ξ©βˆ’={π‘₯βˆˆΞ©βˆΆπœ™π‘˜<0}, then the necessary and sufficient condition for the existence of weak solution of (1.1)-(1.2) is thatξ€œπ‘”(βˆ’βˆž)Ξ©+πœ™π‘˜ξ€œπ‘‘π‘₯+𝑔(∞)Ξ©βˆ’πœ™π‘˜ξ€œπ‘‘π‘₯<Ξ©β„Žπœ™π‘˜ξ€œπ‘‘π‘₯<𝑔(∞)Ξ©+πœ™π‘˜ξ€œπ‘‘π‘₯+𝑔(βˆ’βˆž)Ξ©βˆ’πœ™π‘˜π‘‘π‘₯.(1.3) The condition (1.3) is the well-known Landesman-Lazer condition, named after the authors. The result of the paper [1] has since been generalized by a number of authors which include [2–9], to mention a few.

We mention, briefly, few works without the assumption of the Landesman-Lazer condition. The perturbation of a second order linear elliptic problems by nonlinearity without Landesman-Lazer condition was investigated in [10]. The function 𝑔(𝑒) was assumed to be a bounded continuous function satisfying 𝑔(𝑑)𝑑≀0,π‘‘βˆˆβ„.(1.4) The nonhomogeneous term β„Ž was assumed to be an 𝐿∞-function orthogonal to an eigenfunction πœ™ in 𝐿2, which corresponds to a simple eigenvalue πœ†1. Ha [11] considered the solvability of an operator equation without the Landesman-Lazer condition. The author used a nonlinear CarathΓ©odory function 𝑔(π‘₯,𝑒) which satisfies the conditions ||||𝑔(π‘₯,𝑒)≀𝑏(π‘₯),𝑒𝑔(π‘₯,𝑒)β‰₯0,(1.5) for almost all π‘₯∈Ω and all π‘’βˆˆβ„, where π‘βˆˆπΏ2(Ξ©). The solvability of the operator equation is proved under some hypotheses on 𝑔(π‘₯,𝑒). The nonhomogeneous term β„Ž was assumed to be an 𝐿2-function. Iannacci and Nkashama proved existence of solutions to a class of semilinear two-point eigenvalue boundary value problems at resonance without the Landesman-Lazer condition, by imposing the same conditions as in [11] in conjunction with some other hypotheses on 𝑔 and β„Ž. Furthermore, the existence of solution was proved only for the eigenvalue πœ†=1. Assuming a CarathΓ©odory function 𝑓(π‘₯,𝑒) with some growth restriction and assuming an 𝐿2-function β„Ž, Santanilla [12] proved existence of solution to a nonlinear eigenvalue boundary value problem (for eigenvalue πœ†=1) without Landesman-Lazer condition. Du [13] proved the existence of solution for nonlinear second-order two-point boundary value problems, by allowing the eigenvalue πœ† of the problem to change near the eigenvalues of π‘š2πœ‹2 of the problem π‘¦ξ…žξ…ž+π‘š2πœ‹2𝑦=0,𝑦(0)=𝑦(1)=0. The author did not use the Landesman-Lazer condition and imposed weaker conditions on 𝑔(𝑒) than in [12]. Recently, Sanni [14] proved the existence of solution to the same problem considered by Du [13] with πœ†=π‘š2πœ‹2 exactly, without assuming the Landesman-Lazer condition. The author assumed that |π‘”ξ…ž(𝑒)|≀𝐢=constant and β„ŽβˆˆπΏ2(0,1). Other works without the assumption of Landesman-Lazer condition include [15–21]. We mention that most of the papers on this topic use the methods in [22] and [12]. The method of upper and lower solutions is used in [14]. For several other related resonance problems, we refer the reader to the book of RΔƒdulescu [23].

The current work constitutes further deductions on the problem considered by Landesman and Lazer [1] and is motivated by previous works and by asking if it is possible to obtain a weak solution of (1.1)-(1.2) by setting π‘’βˆΆ=πœ™π‘˜π‘£(π‘₯). The answer is in the affirmative. The substitution gives rise to a degenerate semilinear elliptic equation. Consequently, we prove the existence of weak solution to the degenerate semilinear elliptic equation in a πœ™2π‘˜-weight Sobolev’s space, by using the Schaefer’s fixed point theorem. For information on weighted Sobolev’s spaces, the reader is referred to [24, 25]. The current work is significant in that the condition H enables a relaxation of the Landesman-Lazer condition (1.3), and the solution 𝑒 to (1.1)-(1.2) is constructed using the eigenfunctions πœ™π‘˜. Furthermore, the current analysis takes care of the situation where 𝑔(∞)=𝑔(βˆ’βˆž)=0.

The remaining part of this paper is organized as follows: the weighted Sobolev’s spaces used are defined in Section 2. In addition, we use the substitution 𝑒=πœ™π‘˜π‘£ to get the degenerate semilinear elliptic equation in 𝑣, from which we give a definition of a weak solution. Furthermore, we state two theorems used in the proof of the existence result. In Section 3, we prove the existence and uniqueness of solution to an auxiliary linear problem. In Section 4, we prove a necessary condition for the existence of solution to (1.1)-(1.2) before proving the existence of solution to (1.1)-(1.2). At the end of Section 4, we prove that π‘’βˆΆ=πœ™π‘˜π‘£ is in 𝐻10(Ξ©), provided that π‘£βˆˆπ‘‹. Finally, we give an illustrative example in Section 5 for which our result applies.

2. Preliminaries

We define the following weighted Sobolev’s spaces used in this paper:𝐿2ξ€·Ξ©,πœ™2π‘˜ξ€Έξ‚†βˆΆ=π‘€βˆΆΞ©βŸΆβ„suchthat‖𝑀‖𝐿2(Ξ©,πœ™2π‘˜)<∞,(2.1) where ‖𝑀‖𝐿2(Ξ©,πœ™2π‘˜)=ξ”βˆ«Ξ©πœ™2π‘˜π‘€2𝑑π‘₯.𝐻1ξ€·Ξ©,πœ™2π‘˜ξ€Έξ‚†βˆΆ=π‘€βˆΆΞ©βŸΆβ„suchthat‖𝑀‖𝐻1(Ξ©,πœ™2π‘˜)<∞,(2.2) where ‖𝑀‖𝐻1(Ξ©,πœ™2π‘˜)=ξ”βˆ«Ξ©πœ™2π‘˜π‘€2βˆ«π‘‘π‘₯+Ξ©πœ™2π‘˜|βˆ‡π‘€|2𝑑π‘₯.

For brevity, we set 𝑋=𝐻1(Ξ©,πœ™2π‘˜).

Set π‘’βˆΆ=πœ™π‘˜π‘£(π‘₯) in (1.1) to deduce βˆ’ξ€·Ξ”πœ™π‘˜+πœ†π‘˜πœ™π‘˜ξ€Έπ‘£βˆ’πœ™π‘˜Ξ”π‘£βˆ’2βˆ‡πœ™π‘˜ξ€·πœ™β‹…βˆ‡π‘£=π‘”π‘˜π‘£ξ€Έβˆ’β„Ž(π‘₯)inΞ©.(2.3) Note that the first term on the left of (2.3) vanishes, multiply (2.3) by πœ™π‘˜ and use (1.2) to deduce ξ€·πœ™βˆ’βˆ‡β‹…2π‘˜ξ€Έβˆ‡π‘£=πœ™π‘˜π‘”ξ€·πœ™π‘˜π‘£ξ€Έβˆ’πœ™π‘˜β„Žπœ™(π‘₯)inΞ©,π‘˜π‘£=0onπœ•Ξ©.(2.4) Thus, if we can prove the existence of solution to (2.4), then π‘’βˆΆ=πœ™π‘˜π‘£ solves (1.1)-(1.2). Indeed, we will prove that the solution 𝑒 belongs to the Sobolev space 𝐻10(Ξ©).

Definition 2.1. We say that π‘£βˆˆπ‘‹ is a weak solution of the problem (2.4) provided ξ€œΞ©πœ™2π‘˜ξ€œβˆ‡π‘£β‹…βˆ‡πœπ‘‘π‘₯=Ξ©πœ™π‘˜ξ€·πœ™πœπ‘”π‘˜π‘£ξ€Έξ€œπ‘‘π‘₯βˆ’Ξ©πœ™π‘˜πœβ„Žπ‘‘π‘₯,(2.5) for each πœβˆˆπ‘‹.

Definition 2.2. Let 𝑋 be a Banach space and π΄βˆΆπ‘‹β†’π‘‹ a nonlinear mapping. 𝐴 is called compact provided for each bounded sequence {π‘’π‘˜}βˆžπ‘˜=1 the sequence {𝐴[π‘’π‘˜]}βˆžπ‘˜=1 is precompact; that is, there exists a subsequence {π‘’π‘˜π‘—}βˆžπ‘—=1 such that {𝐴[π‘’π‘˜π‘—]}βˆžπ‘—=1 converges in 𝑋 (see [26]).
The following theorems are applied in this paper.

Theorem 2.3 (Bolzano-Weierstrass). Every bounded sequence of real numbers has a convergent subsequence (see [27]).

Theorem 2.4 (Schaefer’s Fixed Point Theorem). Let 𝑋 be a Banach space and π΄βˆΆπ‘‹βŸΆπ‘‹(2.6) a continuous and compact mapping. Suppose further that the set [𝑒]{π‘’βˆˆπ‘‹βˆ£π‘’=𝜏𝐴forsome0β‰€πœβ‰€1}(2.7) is bounded. Then 𝐴 has a fixed point (see [26]).

3. Auxiliary Linear Problem

Consider the linear boundary value problem: ξ€·πœ™πΏπ‘£βˆΆ=βˆ’βˆ‡β‹…2π‘˜ξ€Έβˆ‡π‘£+πœ‡πœ™2π‘˜π‘£=πœ‡πœ™2π‘˜π‘ +πœ™π‘˜π‘”ξ€·πœ™π‘˜π‘ ξ€Έβˆ’πœ™π‘˜πœ™β„ŽinΞ©,(3.1)π‘˜π‘£=0onπœ•Ξ©,(3.2) where πœ‡ is a strictly positive constant; π‘ βˆˆπΏ2(Ξ©,πœ™2π‘˜), 𝑔(πœ™π‘˜π‘ ), and β„Ž are functions of π‘₯ only.

Theorem 3.1 (a priori estimates). Let 𝑣 be a solution of (3.1)-(3.2). Then π‘£βˆˆπ‘‹ and we have the estimate ‖𝑣‖2𝑋‖≀𝐢𝑠‖2𝐿2(Ξ©,πœ™2π‘˜)+β€–β„Žβ€–2𝐿2(Ξ©)+1<∞,(3.3) for some appropriate constant 𝐢>0.

Proof. Multiply (3.1) by 𝑣, integrate by parts and apply (3.2) to get ξ€œΞ©πœ™2π‘˜||||βˆ‡π‘£2ξ€œπ‘‘π‘₯+πœ‡Ξ©πœ™2π‘˜π‘£2ξ€œπ‘‘π‘₯=πœ‡Ξ©πœ™2π‘˜ξ€œπ‘£π‘ π‘‘π‘₯+Ξ©π‘£πœ™π‘˜π‘”ξ€·πœ™π‘˜π‘ ξ€Έξ€œπ‘‘π‘₯βˆ’Ξ©π‘£πœ™π‘˜ξ‚΅ξ€œβ„Žπ‘‘π‘₯β‰€πœ‡Ξ©πœ™2π‘˜π‘£2𝑑π‘₯1/2ξ‚΅ξ€œΞ©πœ™2π‘˜π‘ 2𝑑π‘₯1/2+ξ‚΅ξ€œΞ©πœ™2π‘˜π‘£2𝑑π‘₯1/2ξ‚΅ξ€œΞ©||π‘”ξ€·πœ™π‘˜π‘ ξ€Έ||2𝑑π‘₯1/2+ξ‚΅ξ€œΞ©πœ™2π‘˜π‘£2𝑑π‘₯1/2ξ‚΅ξ€œΞ©β„Ž2𝑑π‘₯1/2Μˆξ€œ(byHolder'sinequality)≀3πœ–Ξ©πœ™2π‘˜π‘£21𝑑π‘₯+ξ‚΅πœ‡4πœ–2ξ€œΞ©πœ™2π‘˜π‘ 2ξ€œπ‘‘π‘₯+Ξ©||π‘”ξ€·πœ™π‘˜π‘ ξ€Έ||2ξ€œπ‘‘π‘₯+Ξ©β„Ž2𝑑π‘₯(byCauchy'sinequalitywithπœ–).(3.4) Using 𝐻, the second term in the bracket on the right side of (3.4) may be estimated as ||π‘”ξ€·πœ™π‘˜π‘ ξ€Έ||βˆ’π‘”(0)2≀𝐿2||πœ™π‘˜π‘ ||2||π‘”ξ€·πœ™orπ‘˜π‘ ξ€Έ||2||||β‰€βˆ’π‘”(0)2||π‘”ξ€·πœ™+2π‘˜π‘ ξ€Έ||||||𝑔(0)+𝐿2||πœ™π‘˜π‘ ||2||||β‰€βˆ’π‘”(0)2+12||π‘”ξ€·πœ™π‘˜π‘ ξ€Έ||2||||+2𝑔(0)2+𝐿2||πœ™π‘˜π‘ ||2(byYoung'sinequality).(3.5) Simplifying (3.5), we deduce ||π‘”ξ€·πœ™π‘˜π‘ ξ€Έ||ξ€·||πœ™β‰€πΆ1+π‘˜π‘ ||ξ€Έ,(3.6) (see [26]) for some constant 𝐢=𝐢(𝐿,|𝑔(0)|). Notice that (3.6) implies that ξ€œΞ©||π‘”ξ€·πœ™π‘˜π‘ ξ€Έ||2𝑑π‘₯≀𝐢1+‖𝑠‖𝐿2(Ξ©,πœ™2π‘˜)2<∞,(3.7) so that 𝑔(πœ™π‘˜π‘ )∈𝐿2(Ξ©).
Using (3.7) and choosing πœ–>0 sufficiently small in (3.4) and simplifying, we deduce (3.3).

Definition 3.2. (i) The bilinear form 𝐡[β‹…,β‹…] associated with the elliptic operator 𝐿 defined by (3.1) is 𝐡[]ξ€œπ‘£,𝜁∢=Ξ©πœ™2π‘˜ξ€œβˆ‡π‘£β‹…βˆ‡πœπ‘‘π‘₯+πœ‡Ξ©πœ™2π‘˜π‘£πœπ‘‘π‘₯,(3.8) for 𝑣,πœβˆˆπ‘‹,
(ii) π‘£βˆˆπ‘‹ is called a weak solution of the boundary value problem (3.1)-(3.2) provided 𝐡[]=𝑒,πœπœ‡πœ™2π‘˜π‘ +πœ™π‘˜π‘”ξ€·πœ™π‘˜π‘ ξ€Έβˆ’πœ™π‘˜ξ€Έ,β„Ž,𝜁(3.9) for all πœβˆˆπ‘‹, where (β‹…,β‹…) denotes the inner product in 𝐿2(Ξ©).

Theorem 3.3. 𝐡[𝑒,𝑣] satisfies the hypotheses of the Lax-Milgram theorem precisely. In other words, there exists constants 𝛼,𝛽 such that(i)|𝐡[𝑣,𝜁]|β‰€π›Όβ€–π‘£β€–π‘‹β€–πœβ€–π‘‹, (ii)𝛽‖𝑣‖2𝑋≀𝐡[𝑣,𝑣], for all 𝑣,πœβˆˆπ‘‹.

Proof. We have ||𝐡[]||=||||ξ€œπ‘£,πœΞ©πœ™2π‘˜ξ€œβˆ‡π‘£β‹…βˆ‡πœπ‘‘π‘₯+πœ‡Ξ©πœ™2π‘˜||||ξ‚΅ξ€œπ‘£πœπ‘‘π‘₯β‰€πœ‡Ξ©πœ™2π‘˜π‘£2𝑑π‘₯1/2ξ‚΅ξ€œΞ©πœ™2π‘˜πœ2𝑑π‘₯1/2+ξ‚΅ξ€œΞ©πœ™2π‘˜||||βˆ‡π‘£2𝑑π‘₯1/2ξ‚΅ξ€œΞ©πœ™2π‘˜||||βˆ‡πœ2𝑑π‘₯1/2ξ€·ΜˆbyHolderξ…žξ€Έsinequalityβ‰€π›Όβ€–π‘£β€–π‘‹β€–πœβ€–π‘‹,(3.10) for appropriate constant 𝛼>0. This proves (i).
We now proof (ii). We readily check that 𝛽‖𝑣‖2π‘‹β‰€ξ€œΞ©πœ™2π‘˜||||βˆ‡π‘£2ξ€œπ‘‘π‘₯+πœ‡Ξ©πœ™2π‘˜π‘£2[],𝑑π‘₯=𝐡𝑣,𝑣(3.11) for some constant 𝛽>0. We can for example take 𝛽=min{1,πœ‡}.

Theorem 3.4. There exists unique weak solution to the degenerate linear boundary value problem (3.1)-(3.2).

Proof. The hypothesis on β„Ž and (3.7) imply that 𝑔(πœ™π‘˜π‘ )βˆ’β„ŽβˆˆπΏ2(Ξ©). For fixed 𝑔(πœ™π‘˜π‘ )βˆ’β„Ž, set βŸ¨πœ‡πœ™2π‘˜π‘ +πœ™π‘˜π‘”(πœ™π‘˜π‘ )βˆ’πœ™π‘˜β„Ž,𝜁⟩∢=(πœ‡πœ™2π‘˜π‘ +πœ™π‘˜π‘”(πœ™π‘˜π‘ )βˆ’πœ™π‘˜β„Ž,𝜁)𝐿2(Ξ©) for all πœβˆˆπ‘‹ (where ⟨,β‹…,⟩ denotes the pairing of 𝑋 with its dual). This is a bounded linear functional on 𝐿2(Ξ©) and thus on 𝑋. Lax-Milgram theorem (see, e.g., [26]) can be applied to find a unique function π‘£βˆˆπ‘‹ satisfying 𝐡[]=𝑣,πœπœ‡πœ™2π‘˜π‘ +πœ™π‘˜π‘”ξ€·πœ™π‘˜π‘ ξ€Έβˆ’πœ™π‘˜ξ¬,β„Ž,𝜁(3.12) for all πœβˆˆπ‘‹. Consequently, 𝑣 is the unique weak solution of the problem (3.1)-(3.2).

4. Main Results

Theorem 4.1. The necessary condition that π‘’βˆˆπ»10(Ξ©) be a weak solution to (1.1)-(1.2) is that ξ€œΞ©π‘”(𝑒)πœ™π‘˜ξ€œπ‘‘π‘₯=Ξ©β„Žπœ™π‘˜π‘‘π‘₯.(4.1)

Proof. Suppose π‘’βˆˆπ»10(Ξ©) is a weak solution of (1.1)-(1.2). For a test function πœ™π‘˜, using integration by parts, we have: ξ€œΞ©Ξ”π‘’πœ™π‘˜π‘‘π‘₯+πœ†π‘˜ξ€œΞ©π‘’πœ™π‘˜ξ€œπ‘‘π‘₯+Ω𝑔(𝑒)πœ™π‘˜ξ€œπ‘‘π‘₯=βˆ’Ξ©βˆ‡π‘’β‹…βˆ‡πœ™π‘˜+πœ†π‘˜ξ€œΞ©π‘’πœ™π‘˜ξ€œπ‘‘π‘₯+Ω𝑔(𝑒)πœ™π‘˜=ξ€œπ‘‘π‘₯Ξ©π‘’ξ€·Ξ”πœ™π‘˜+πœ†π‘˜πœ™π‘˜ξ€Έξ€œπ‘‘π‘₯+Ω𝑔(𝑒)πœ™π‘˜ξ€œπ‘‘π‘₯=Ξ©β„Žπœ™π‘˜π‘‘π‘₯,(4.2) from which (4.1) follows, since Ξ”πœ™π‘˜+πœ†π‘˜πœ™π‘˜=0.

Theorem 4.2. Let the condition (4.1) of Theorem 4.1 holds. Then there exists a weak solution to the problem (2.4).

Proof. The proof is split in seven steps.
Step 1. A fixed point argument to (2.4) is ξ€·πœ™βˆ’βˆ‡β‹…2π‘˜ξ€Έβˆ‡π‘€+πœ‡πœ™2π‘˜π‘€=πœ‡πœ™2π‘˜π‘£+πœ™π‘˜π‘”ξ€·πœ™π‘˜π‘£ξ€Έβˆ’πœ™π‘˜πœ™β„Ž(π‘₯)inΞ©,π‘˜π‘€=0onπœ•Ξ©.(4.3) Define a mapping π΄βˆΆπ‘‹βŸΆπ‘‹(4.4) by setting 𝐴[𝑣]=𝑀 whenever 𝑀 is derived from 𝑣 via (4.3). We claim that 𝐴 is a continuous and compact mapping. Our claim is proved in the next two steps.Step 2. Choose ̃𝑣,π‘£βˆˆπ‘‹, and define ̃𝑀𝐴[𝑣]=𝑀,𝐴[𝑣]=. For two solutions 𝑀,π‘€βˆˆπ‘‹ of (4.3), we have ξ€Ίπœ™βˆ’βˆ‡β‹…2π‘˜βˆ‡ξ€·ξ‚π‘€π‘€βˆ’ξ€Έξ€»+πœ‡πœ™2π‘˜ξ€·ξ‚π‘€ξ€Έπ‘€βˆ’=πœ‡πœ™2π‘˜Μƒ(π‘£βˆ’π‘£)+πœ™π‘˜π‘”ξ€·πœ™π‘˜π‘£ξ€Έβˆ’πœ™π‘˜π‘”ξ€·πœ™π‘˜Μƒπ‘£ξ€Έπœ™inΞ©,π‘˜ξ€·ξ‚π‘€ξ€Έπ‘€βˆ’=0onπœ•Ξ©.(4.5) Using (4.5), we obtain an analogous estimate to (3.4), namely: ξ€œΞ©πœ™π‘˜||𝑀||βˆ‡π‘€βˆ’βˆ‡2ξ€œπ‘‘π‘₯+πœ‡Ξ©πœ™2π‘˜||𝑀||π‘€βˆ’2ξ€œβ‰€3πœ–Ξ©πœ™2π‘˜||𝑀||π‘€βˆ’2+1𝑑π‘₯ξ‚΅πœ‡4πœ–2ξ€œΞ©πœ™π‘˜||̃𝑣||π‘£βˆ’2𝐿2(Ξ©,πœ™2π‘˜)+ξ€œΞ©||π‘”ξ€·πœ™π‘˜π‘£ξ€Έξ€·πœ™βˆ’π‘”π‘˜Μƒπ‘£ξ€Έ||2ξ‚Ά.𝑑π‘₯(4.6) Now ξ€œΞ©||π‘”ξ€·πœ™π‘˜π‘£ξ€Έξ€·πœ™βˆ’π‘”π‘˜Μƒπ‘£ξ€Έ||2ξ€œπ‘‘π‘₯β‰€Ξ©πœ™2π‘˜πΏ2||̃𝑣||π‘£βˆ’2𝑑π‘₯,(4.7) using the condition (H). We may now use (4.7) in (4.6) and simplify to deduce [𝑣][̃𝑣]β€–β€–π΄βˆ’π΄π‘‹=β€–β€–ξ‚π‘€β€–β€–π‘€βˆ’π‘‹Μƒβ‰€πΆβ€–π‘£βˆ’π‘£β€–πΏ2(Ξ©,πœ™2π‘˜)Μƒβ‰€πΆβ€–π‘£βˆ’π‘£β€–π‘‹,(4.8) for some constant 𝐢>0. Thus, the mapping 𝐴 is Lipschitz continuous, and hence continuous.Step 3. Let {π‘£π‘˜}βˆžπ‘˜=1 be a bounded sequence in 𝑋. By Bolzano-Weierstrass theorem, it has a convergent subsequence, say {π‘£π‘˜π‘—}βˆžπ‘—=1. Define π‘£βˆΆ=limπ‘˜π‘—β†’βˆžπ‘£π‘˜π‘—.(4.9) Using (4.8)-(4.9), we deduce limπ‘˜π‘—β†’β€–β€–π΄ξ‚ƒπ‘£π‘˜π‘—ξ‚„[𝑣]β€–β€–βˆ’π΄π‘‹β‰€limπ‘˜π‘—β†’βˆžπΆβ€–β€–π‘£π‘˜π‘—β€–β€–βˆ’π‘£π‘‹=0.(4.10) Thus, 𝐴[π‘£π‘˜π‘—]→𝐴[𝑣] in 𝑋. Therefore, 𝐴 is compact.Step 4. Define a set 𝐾∢={π‘βˆˆπ‘‹βˆΆπ‘=𝜏𝐴[𝑝]forsome0β‰€πœβ‰€1}. We will show that 𝐾 is a bounded set. Let π‘£βˆˆπΎ. Then 𝑣=𝜏𝐴[𝑣] for some 𝜏∈[0,1]. Thus, we have 𝑣/𝜏=𝐴[𝑣]. By the definition of the mapping 𝐴, 𝑀=𝑣/𝜏 is the solution of the problem ξ‚ƒπœ™βˆ’βˆ‡β‹…2π‘˜βˆ‡ξ‚€π‘£πœξ‚ξ‚„+πœ‡πœ™2π‘˜π‘£πœ=πœ‡πœ™2π‘˜π‘£+πœ™π‘˜π‘”ξ€·πœ™π‘˜π‘£ξ€Έβˆ’πœ™π‘˜πœ™β„Ž(π‘₯)inΞ©,π‘˜π‘£πœ=0onπœ•Ξ©.(4.11) Now, (4.11) are equivalent to ξ€·πœ™βˆ’βˆ‡β‹…2π‘˜ξ€Έβˆ‡π‘£+πœ‡πœ™2π‘˜π‘£=πœ‡πœπœ™2π‘˜π‘£+πœπœ™π‘˜π‘”ξ€·πœ™π‘˜π‘£ξ€Έβˆ’πœπœ™π‘˜πœ™β„Ž(π‘₯)inΞ©,π‘˜π‘£=0onπœ•Ξ©.(4.12) Using (4.12) we have an analogous estimate to (3.3) of Theorem 3.1, namely: ‖𝑣‖2π‘‹ξ‚€β€–β‰€πœπΆπ‘£β€–2𝐿2(Ξ©,πœ™2π‘˜)+β€–β„Žβ€–2𝐿2(Ξ©).+1(4.13) Choosing 𝜏∈[0,1] sufficiently small in (4.13) and simplifying, we conclude that β€–π‘£β€–π‘‹ξ”β‰€πΆβ€–β„Žβ€–2𝐿2(Ξ©)+1<∞(4.14) for some constant 𝐢>0. Equation (4.14) implies that the set 𝐾 is bounded, since 𝑣 was arbitrarily chosen.
Since the mapping 𝐴 is continuous and compact and the set 𝐾 is bounded, by Schaefer’s fixed point theorem (see, e.g., [26]), the mapping 𝐴 has a fixed point in 𝑋.
Step 5. Write πœ™π‘˜π‘£0=πœ™π‘˜π‘£|πœ•Ξ©=0. For π‘š=0,1,2,…, inductively define π‘£π‘š+1βˆˆπ‘‹ to be the unique weak solution of the linear boundary value problem ξ€·πœ™βˆ’βˆ‡β‹…2π‘˜βˆ‡π‘£π‘š+1ξ€Έ+πœ‡πœ™2π‘˜π‘£π‘š+1=πœ‡πœ™2π‘˜π‘£π‘š+πœ™π‘˜π‘”ξ€·πœ™π‘˜π‘£π‘šξ€Έβˆ’πœ™π‘˜πœ™β„Ž(π‘₯)inΞ©,(4.15)π‘˜π‘£π‘š+1=0onπœ•Ξ©.(4.16) Clearly, our definition of π‘£π‘š+1βˆˆπ‘‹ as the unique weak solution of (4.15)-(4.16) is justified by Theorem 3.4. Hence, by the definition of the mapping 𝐴, we have for π‘š=0,1,2,β€¦βˆΆπ‘£π‘š+1𝑣=π΄π‘šξ€».(4.17) Since 𝐴 has a fixed point in 𝑋, there exists π‘£βˆˆπ‘‹ such that limπ‘šβ†’βˆžπ‘£π‘š+1=limπ‘šβ†’βˆžπ΄ξ€Ίπ‘£π‘šξ€»[𝑣]=𝐴=𝑣.(4.18)Step 6. Using (4.15)-(4.16), we obtain an analogous estimate to (3.3), namely: β€–β€–π‘£π‘š+1β€–β€–2π‘‹ξ‚€β€–β€–π‘£β‰€πΆπ‘šβ€–β€–2𝐿2(Ξ©,πœ™2π‘˜)+β€–β„Žβ€–2𝐿2(Ξ©)‖‖𝑣+1β‰€πΆπ‘šβ€–β€–2𝑋+β€–β„Žβ€–2𝐿2(Ξ©)+1(4.19) for some appropriate constant 𝐢>0. Using (4.18), we take the limit on the right side of (4.19) to deduce that supπ‘šβ€–β€–π‘£π‘šβ€–β€–π‘‹<∞.(4.20) Equation (4.20) implies the existence of a subsequence {π‘£π‘šπ‘—}βˆžπ‘—=1 converging weakly in 𝑋 to π‘£βˆˆπ‘‹.
Furthermore, using (3.7), we deduce ξ€œΞ©||π‘”ξ€·πœ™π‘˜π‘£π‘šξ€Έ||2‖‖𝑣𝑑π‘₯≀𝐢1+π‘šβ€–β€–2𝐿2(Ξ©,πœ™2π‘˜)2.(4.21) Again, we use (4.18) to obtain the limit on the right side of (4.21) to deduce that supπ‘šβ€–β€–π‘”ξ€·πœ™π‘˜π‘£π‘šξ€Έβ€–β€–πΏ2(Ξ©)<∞.(4.22) Equation (4.22) implies the existence of a subsequence {𝑔(πœ™π‘˜π‘£π‘šπ‘—)}βˆžπ‘—=1 converging weakly in 𝐿2(Ξ©) to 𝑔(πœ™π‘˜π‘£) in 𝐿2(Ξ©).
Step 7. Finally, we verify that 𝑣 is a weak solution of (2.4). For brevity, we take the subsequences of the last step as {π‘£π‘š}βˆžπ‘š=1 and {𝑔(πœ™π‘˜π‘£π‘š)}βˆžπ‘š=1. Fix πœβˆˆπ‘‹. Multiply (4.15) by 𝜁, integrate by parts and apply (4.16) to get ξ€œΞ©πœ™2π‘˜βˆ‡π‘£π‘š+1ξ€œβ‹…βˆ‡πœπ‘‘π‘₯+πœ‡Ξ©πœ™2π‘˜π‘£π‘š+1ξ€œπœπ‘‘π‘₯=πœ‡Ξ©πœ™2π‘˜π‘£π‘šξ€œπœπ‘‘π‘₯+Ξ©πœπœ™π‘˜π‘”ξ€·πœ™π‘˜π‘£π‘šξ€Έξ€œπ‘‘π‘₯βˆ’Ξ©πœπœ™π‘˜β„Žπ‘‘π‘₯.(4.23) Using the deductions of the last step, we let π‘šβ†’βˆž in (4.23) to obtain ξ€œΞ©πœ™π‘˜ξ€œβˆ‡π‘£β‹…βˆ‡πœπ‘‘π‘₯+πœ‡Ξ©πœ™2π‘˜ξ€œπ‘£πœπ‘‘π‘₯=πœ‡Ξ©πœ™2π‘˜ξ€œπ‘£πœπ‘‘π‘₯+Ξ©πœπœ™π‘˜π‘”ξ€·πœ™π‘˜π‘£ξ€Έξ€œπ‘‘π‘₯βˆ’Ξ©πœπœ™π‘˜β„Žπ‘‘π‘₯,(4.24) from which canceling the terms in πœ‡, we obtain (2.5) as desired.

Theorem 4.3. Let π‘£βˆˆπ‘‹ be the solution of (3.1)-(3.2). Then, the solution π‘’βˆΆ=πœ™π‘˜π‘£ of (1.1)-(1.2) belongs to 𝐻10(Ξ©), and we have the estimate ‖𝑒‖𝐻10(Ξ©)≀𝐢‖𝑣‖𝑋,(4.25) for some constant 𝐢>0.

Proof. We split the proof in two steps.
Step 1. Recall that πœ™π‘˜ satisfies the equations: Ξ”πœ™π‘˜+πœ†π‘˜πœ™π‘˜=0inΞ©βˆˆβ„π‘›,πœ™(4.26)π‘˜=0onπœ•Ξ©.(4.27) Multiplying (4.26) by 𝑣2πœ™π‘˜, integrating by parts and applying (4.27) we compute ξ€œΞ©π‘£2πœ™π‘˜Ξ”πœ™π‘˜π‘‘π‘₯+πœ†π‘˜ξ€œΞ©π‘£2πœ™2π‘˜ξ€œπ‘‘π‘₯=0orΞ©βˆ‡ξ€·π‘£2πœ™π‘˜ξ€Έβ‹…βˆ‡πœ™π‘˜π‘‘π‘₯=πœ†π‘˜ξ€œΞ©π‘£2πœ™2π‘˜ξ€œπ‘‘π‘₯orΞ©||βˆ‡πœ™π‘˜||2𝑣2𝑑π‘₯=πœ†π‘˜ξ€œΞ©π‘£2πœ™2π‘˜ξ€œπ‘‘π‘₯βˆ’2Ξ©πœ™π‘˜π‘£βˆ‡π‘£β‹…βˆ‡πœ™π‘˜π‘‘π‘₯(4.28)β‰€πœ†π‘˜ξ€œΞ©π‘£2πœ™2π‘˜ξ€œπ‘‘π‘₯+πœ–Ξ©||βˆ‡πœ™π‘˜||2𝑣21𝑑π‘₯+πœ–ξ€œΞ©πœ™2π‘˜||||βˆ‡π‘£2𝑑π‘₯,(4.29) by Cauchy’s inequality with πœ–. Choosing πœ–>0 sufficiently small in (4.29) and simplifying, we deduce ξ€œΞ©||βˆ‡πœ™π‘˜||2𝑣2𝑑π‘₯≀𝐢‖𝑣‖2𝑋,(4.30) for some constant 𝐢>0.Step 2. We have ξ€œΞ©π‘’2ξ€œπ‘‘π‘₯=Ξ©πœ™2π‘˜π‘£2ξ€œπ‘‘π‘₯,Ξ©||||βˆ‡π‘’2ξ€œπ‘‘π‘₯=Ξ©||βˆ‡ξ€·πœ™π‘˜π‘£ξ€Έ||2ξ€œπ‘‘π‘₯=Ξ©||βˆ‡πœ™π‘˜π‘£+πœ™π‘˜||βˆ‡π‘£2ξ€œπ‘‘π‘₯≀2Ξ©||βˆ‡πœ™π‘˜||2𝑣2ξ€œπ‘‘π‘₯+2Ξ©πœ™2π‘˜||||βˆ‡π‘£2𝑑π‘₯≀𝐢‖𝑣‖2𝑋,(using(4.30))(4.31) for some constant 𝐢>0. Thus, π‘’βˆˆπ»1(Ξ©). Hence, by a Sobolev’s embedding theorem (see [26, page 269]), we have that π‘’βˆˆπ»10(Ξ©), since 𝑒|πœ•Ξ©=0.

5. Illustrative Example

Consider the following special case for 𝑛=1: π‘’ξ…žξ…ž+π‘’βˆ’2𝑒=1in(0,πœ‹),𝑒(0)=𝑒(πœ‹)=0.(5.1) In this case, the eigenfunction πœ™π‘˜=sinπ‘₯, 𝑔(𝑒)=βˆ’2𝑒, and β„Ž=1. Clearly 𝑔(𝑒) is Lipschitz continuous and β„ŽβˆˆπΏ2(Ξ©). Provided the necessary conditionξ€œβˆ’2πœ‹0ξ€œπ‘’sinπ‘₯𝑑π‘₯=πœ‹0sinπ‘₯𝑑π‘₯(5.2) is satisfied; Theorems 4.2 and 4.3 ensure the existence of a solution π‘’βˆΆ=πœ™π‘˜π‘£(π‘₯)∈𝐻10(Ξ©) of the problem (5.1). Now, the problem (5.1) admits the solution𝑒=sinh(πœ‹βˆ’π‘₯)+sinhπ‘₯sinhπœ‹βˆ’1.(5.3) Using (5.3) in (5.2), it is not difficult to verify that the necessary condition ξ€œβˆ’2πœ‹0ξ‚΅sinh(πœ‹βˆ’π‘₯)+sinhπ‘₯ξ‚Άξ€œsinhπœ‹βˆ’1sinπ‘₯𝑑π‘₯=πœ‹0sinπ‘₯𝑑π‘₯=2(5.4) is satisfied.