Abstract

We improve some results of Pan and Xing (2008) and extend the exponent range in Liouville-type theorems for some parabolic systems of inequalities with the time variable on โ„. As an immediate application of the parabolic Liouville-type theorems, the range of the exponent in blow-up rates for the corresponding systems is also improved.

1. Introduction

In this paper, we are concerned with the following two problems: one is blow-up rates for blow-up solutions of the higher-order semilinear parabolic system ๐‘ข๐‘ก+(โˆ’ฮ”)๐‘š๐‘ข=|๐‘ฃ|๐‘,๐‘ฃ๐‘ก+(โˆ’ฮ”)๐‘š๐‘ฃ=|๐‘ข|๐‘ž,(๐‘ฅ,๐‘ก)โˆˆโ„๐‘ร—(0,๐‘‡),๐‘ข(๐‘ฅ,0)=๐‘ข0(๐‘ฅ)โˆˆ๐ฟโˆž๎€ทโ„๐‘๎€ธ,๐‘ฃ(๐‘ฅ,0)=๐‘ฃ0(๐‘ฅ)โˆˆ๐ฟโˆž๎€ทโ„๐‘๎€ธ,(1.1) where ๐‘šโฉพ1 and ๐‘,๐‘ž>1; the other is parabolic Liouville theorems for the problem ๐‘ข๐‘ก+(โˆ’ฮ”)๐‘š๐‘ข=|๐‘ฃ|๐‘,๐‘ฃ๐‘ก+(โˆ’ฮ”)๐‘š๐‘ฃ=|๐‘ข|๐‘ž,(๐‘ฅ,๐‘ก)โˆˆโ„๐‘ร—โ„,๐‘ข(๐‘ฅ,๐‘ก)โˆˆ๐ฟ๐‘loc๎€ทโ„๐‘+1๎€ธ,๐‘ฃ(๐‘ฅ,๐‘ก)โˆˆ๐ฟ๐‘žloc๎€ทโ„๐‘+1๎€ธ,(1.2) where ๐‘šโฉพ1 and ๐‘,๐‘ž>1. The first problem is directly related to the second one. Actually, blow-up rates of the blow-up solutions, by scaling arguments, are often converted to nonexistence of solutions of some limiting problems with ๐‘กโˆˆโ„ (see, e.g., Polรกฤik and Quittner [1] and Xing [2]).

Recall that, in his famous paper [3], Fujita studied the initial value problem ๐‘ข๐‘กโˆ’ฮ”๐‘ข=๐‘ข๐‘,(๐‘ฅ,๐‘ก)โˆˆโ„๐‘ร—(0,โˆž),๐‘ข(๐‘ฅ,0)=๐‘ข0(๐‘ฅ),๐‘ฅโˆˆโ„๐‘,(1.3) for nonnegative initial data ๐‘ข0. He obtained the following.(i)If 1<๐‘<1+2/๐‘, then the only nonnegative global solution is ๐‘ขโ‰ก0.(ii)If ๐‘>1+2/๐‘, then there exist global solutions for some small initial value.

The number 1+2/๐‘ belonging to Case (i) had been answered in [4โ€“7], and an elegant proof was given by Weissler [7]. The number 1+2/๐‘ is named the critical blow-up exponent (or critical Fujita exponent).

Ever since then, Fujita's result has been given great attention and extended in various directions. One direction is to consider the problems on other domains. For example, โ„๐‘ is replaced by a cone or exterior of a bounded domain, and so forth. Another direction is to extend these results to more general equations and systems (see the survey papers [8โ€“10] and references therein). We just briefly describe the results directly connected to our problems.(1)The systems from the point of view of the critical blow-up exponent originate in the 1990s. Escobedo and Herrero [11] discussed the following weakly coupled second-order parabolic system ๐‘ข๐‘กโˆ’ฮ”๐‘ข=๐‘ฃ๐‘,๐‘ฃ๐‘กโˆ’ฮ”๐‘ฃ=๐‘ข๐‘ž,(๐‘ฅ,๐‘ก)โˆˆโ„๐‘ร—(0,๐‘‡),๐‘ข(๐‘ฅ,0)=๐‘ข0(๐‘ฅ)โฉพ0โˆˆ๐ฟโˆž๎€ทโ„๐‘๎€ธ,๐‘ฃ(๐‘ฅ,0)=๐‘ฃ0(๐‘ฅ)โฉพ0โˆˆ๐ฟโˆž๎€ทโ„๐‘๎€ธ,(1.4) with ๐‘>0 and ๐‘ž>0. They established the following.(i)If 0<๐‘๐‘žโฉฝ1, then all solutions are global.(ii)If ๐‘๐‘ž>1 and ๐‘/2โฉฝmax{(๐‘+1)/(๐‘๐‘žโˆ’1),(๐‘ž+1)/(๐‘๐‘žโˆ’1)}, then every nontrivial solution blows up in finite time.(iii)If ๐‘๐‘ž>1 and ๐‘/2>max{(๐‘+1)/(๐‘๐‘žโˆ’1),(๐‘ž+1)/(๐‘๐‘žโˆ’1)}, then there exist both global solutions and blow-up solutions.(2)Egorov et al. [12] considered a class of higher-order parabolic system of inequalities and gave some results about nonexistence of the nontrivial global solutions with initial data having nonnegative average value.(3)A natural generalization of classical weakly coupled system (1.4) are the higher-order parabolic system (1.1). Pang et al. [13] studied (1.1) and obtained the following results.(i)If ๐‘/2๐‘šโฉฝmin{(๐‘+1)/(๐‘๐‘žโˆ’1),(๐‘ž+1)/(๐‘๐‘žโˆ’1)}, then every solution with initial data having positive average value does not exist globally in time.(ii)If ๐‘/2๐‘š>max{(๐‘+1)/(๐‘๐‘žโˆ’1),(๐‘ž+1)/(๐‘๐‘žโˆ’1)}, then global solutions with small initial data exist. Notice that there exists a gap between the range of exponent in the two cases. In fact, in an earlier monograph [14], Mitidieri and Pokhozhaev have shown that Case (i) holds true for ๐‘/2๐‘šโฉฝmax{(๐‘+1)/(๐‘๐‘žโˆ’1),(๐‘ž+1)/(๐‘๐‘žโˆ’1)} (see [14, Exampleโ€‰โ€‰38.2]). Integrating these results in [13, 14], one directly obtains a complete Fujita-type theorem for the higher-order parabolic system (1.1).

Theorem 1.1. Assume ๐‘>1 and ๐‘ž>1. Then โ€‰ (i)if ๐‘/2๐‘šโฉฝmax{(๐‘+1)/(๐‘๐‘žโˆ’1),(๐‘ž+1)/(๐‘๐‘žโˆ’1)}, then every solution of (1.1) with initial data having positive average value does not exist globally in time;(ii)if ๐‘/2๐‘š>max{(๐‘+1)/(๐‘๐‘žโˆ’1),(๐‘ž+1)/(๐‘๐‘žโˆ’1)}, then global solutions of (1.1) with small initial data exist.

(4)Recently, Pan and Xing [15] considered the problem (1.2) and proved a parabolic Liouville theorem; that is, if ๐‘/2๐‘šโฉฝmin{(๐‘ž+1)/(๐‘๐‘žโˆ’1),(๐‘+1)/(๐‘๐‘žโˆ’1)}, then the global solution of (1.2) is trivial. As an immediate application of the result, blow-up rates for the problem (1.1) is also obtained: Let (๐‘ข,๐‘ฃ) be a solution of (1.1) which blows up at a finite time ๐‘‡. Then there is a constant ๐ถ>0 such that sup๐‘ฅโˆˆโ„๐‘|๐‘ข(๐‘ฅ,๐‘ก)|,sup๐‘ฅโˆˆโ„๐‘|๐‘ฃ(๐‘ฅ,๐‘ก)|โฉฝ๐ถ(๐‘‡โˆ’๐‘ก)โˆ’(๐‘ž+1)/(๐‘๐‘žโˆ’1) for ๐‘/2๐‘šโฉฝmin{(๐‘+1)/(๐‘๐‘žโˆ’1),(๐‘ž+1)/(๐‘๐‘žโˆ’1)}.

The purpose of this note is to improve the results of [15]. More precisely, we will extend the exponent range from ๐‘/2๐‘šโฉฝmin{(๐‘ž+1)/(๐‘๐‘žโˆ’1),(๐‘+1)/(๐‘๐‘žโˆ’1)} to ๐‘/2๐‘šโฉฝmax{(๐‘ž+1)/(๐‘๐‘žโˆ’1),(๐‘+1)/(๐‘๐‘žโˆ’1)} for both blow-up rates and parabolic Liouville theorems of [15]. The main results of this paper are Theorems 2.1 and 3.1. Our methods are similar to [14, 15]. In fact, the present Theorem 2.1 will be proved by modifying part of the proof of Theoremโ€‰โ€‰4.3 of [15].

The organization of this paper is as follows. In Section 2, we improve the range of the exponent for parabolic Liouville-type theorems in [15]. As a direct application, the exponent range in blow-up rates for corresponding systems is extended in Section 3.

2. Parabolic Liouville-Type Theorem for Higher-Order System of Inequalities

In this section, we will improve the exponent range of some parabolic Liouville-type theorems for higher-order semilinear parabolic systems.

Now we consider a class of more general parabolic systems of inequalities than (1.2). Let ๐ฟ=๐ฟ(๐‘ก,๐‘ฅ,๐ท๐‘ฅ) be a differential operator of order โ„“: ๐ฟ[๐‘ฃ]๎“โˆถ=|๐›ผ|=โ„“๐ท๐›ผ๎€ท๐‘Ž๐›ผ(๎€ธ๐‘ก,๐‘ฅ,๐‘ฃ)๐‘ฃ,(2.1) and let ๐‘€ be a differential operator of order โ„Ž: ๐‘€[๐‘ฃ]๎“โˆถ=||๐›ฝ||=โ„Ž๐ท๐›ฝ๎€ท๐‘๐›ฝ(๎€ธ๐‘ก,๐‘ฅ,๐‘ฃ)๐‘ฃ,(2.2) where ๐‘Ž๐›ผ(๐‘ก,๐‘ฅ,๐‘ฃ) and ๐‘๐›ฝ(๐‘ก,๐‘ฅ,๐‘ฃ) are bounded functions defined for ๐‘กโˆˆโ„,๐‘ฅโˆˆโ„๐‘,and๐‘ฃโˆˆโ„.

Consider the set of (๐‘ข,๐‘ฃ) satisfying the inequalities: ๐œ•๐‘ข[๐‘ข]๐œ•๐‘กโฉพ๐ฟ+|๐‘ฃ|๐‘ž2,๐œ•๐‘ฃ[๐‘ฃ]๐œ•๐‘กโฉพ๐‘€+|๐‘ข|๐‘ž1,(๐‘ฅ,๐‘ก)โˆˆโ„๐‘ร—โ„,(2.3)

in the following weak sense: if ๐œ“โˆˆ๐ถ0max{โ„“,โ„Ž}(โ„๐‘+1) and ๐œ“(๐‘ฅ,๐‘ก)โฉพ0, then โˆ’๎€œ๐œ•๐œ“๎€œ๐œ•๐‘ก๐‘ข๐‘‘๐‘ฅ๐‘‘๐‘กโˆ’๐‘ข๐ฟโˆ—[๐œ“]๎€œ|๐‘‘๐‘ฅ๐‘‘๐‘กโฉพ๐‘ฃ|๐‘ž2โˆ’๎€œ๐œ“๐‘‘๐‘ฅ๐‘‘๐‘ก,(2.4)๐œ•๐œ“๎€œ๐œ•๐‘ก๐‘ฃ๐‘‘๐‘ฅ๐‘‘๐‘กโˆ’๐‘ฃ๐‘€โˆ—[๐œ“]๎€œ๐‘‘๐‘ฅ๐‘‘๐‘กโฉพ|๐‘ข|๐‘ž1๐œ“๐‘‘๐‘ฅ๐‘‘๐‘ก.(2.5) Here and in the following, if the limits of integration are not given, then the integrals are taken over the space โ„๐‘ร—โ„, and ๐ฟโˆ—[๐œ“]๎“โˆถ=|๐›ผ|=โ„“๐‘Ž๐›ผ(๐‘ก,๐‘ฅ,๐‘ข)(โˆ’๐ท)๐›ผ๐œ“,๐‘€โˆ—[๐œ“]๎“โˆถ=|๐›ผ|=โ„Ž๐‘๐›ผ(๐‘ก,๐‘ฅ,๐‘ข)(โˆ’๐ท)๐›ผ๐œ“.(2.6)

Here is the main result of this section.

Theorem 2.1. If two functions ๐‘ข(๐‘ฅ,๐‘ก)โˆˆ๐ฟ๐‘ž1loc(โ„๐‘+1) and ๐‘ฃ(๐‘ฅ,๐‘ก)โˆˆ๐ฟ๐‘ž2loc(โ„๐‘+1) satisfy (2.4) and (2.5), then ๐‘ข(๐‘ฅ,๐‘ก)โ‰ก0,๐‘ฃ(๐‘ฅ,๐‘ก)โ‰ก0 for ๐‘ž1,๐‘ž2>1 and (๐‘ž1,๐‘ž2)โˆˆฮ“1โˆชฮ“2, where ฮ“1=๎‚ป๎€ท๐‘ž1,๐‘ž2๎€ธโˆฃ๐‘๎‚ป๐‘žmin{โ„“,โ„Ž}โฉฝmax1+1๐‘ž1๐‘ž2,๐‘žโˆ’12+1๐‘ž1๐‘ž2,ฮ“โˆ’1๎‚ผ๎‚ผ2=๎‚ป๎€ท๐‘ž1,๐‘ž2๎€ธ๎‚ป๐‘žโˆฃ๐‘+max{โ„“,โ„Ž}โฉฝmaxโ„Ž+1โ„“+โ„Ž๐‘ž1๐‘ž2๐‘žโˆ’1,โ„“+2โ„Ž+โ„“๐‘ž1๐‘ž2.โˆ’1๎‚ผ๎‚ผ(2.7)

Remark 2.2. In fact, we will extend the range of the exponents ๐‘ž1,๐‘ž2 in Theorem 4.3 of [15] from ๎‚ป๎€ท๐‘ž1,๐‘ž2๎€ธโˆฃ๐‘๎‚ป๐‘žmin{โ„“,โ„Ž}โฉฝmin1+1๐‘ž1๐‘ž2,๐‘žโˆ’12+1๐‘ž1๐‘ž2โˆ’1๎‚ผ๎‚ผ(2.8) to ฮ“1โˆชฮ“2. Obviously, ฮ“1 contains the range of the exponent in [15].

As an immediate application, we take ๐ฟ=๐‘€=โˆ’(โˆ’ฮ”)๐‘š,๐‘”1(๐‘ข,๐‘ฃ)=|๐‘ฃ|๐‘,and๐‘”2(๐‘ข,๐‘ฃ)=|๐‘ข|๐‘ž.

Corollary 2.3. If two functions ๐‘ข(๐‘ฅ,๐‘ก)โˆˆ๐ฟ๐‘loc(โ„๐‘+1) and ๐‘ฃ(๐‘ฅ,๐‘ก)โˆˆ๐ฟqloc(โ„๐‘+1) satisfy ๐‘ข๐‘ก+(โˆ’ฮ”)๐‘š๐‘ข=|๐‘ฃ|๐‘,๐‘ฃ๐‘ก+(โˆ’ฮ”)๐‘š๐‘ฃ=|๐‘ข|๐‘ž,(2.9) on โ„๐‘ร—โ„, then ๐‘ข(๐‘ฅ,๐‘ก)โ‰ก0,๐‘ฃ(๐‘ฅ,๐‘ก)โ‰ก0 for ๐‘,๐‘ž>1 belonging to the following set: ๎‚ป๐‘(๐‘,๐‘ž)โˆฃ๎‚ป2๐‘šโฉฝmax๐‘ž+1,๐‘๐‘žโˆ’1๐‘+1๐‘๐‘žโˆ’1๎‚ผ๎‚ผ.(2.10)

Remark 2.4. In fact, the present Theorem 2.1 will be proved by modifying part of the proof of Theoremโ€‰โ€‰4.3 of [15]. In the following proof, the part before the inequalities (2.24) is the same as that in Theorem 4.3 of [15]. The main difference between the proofs is the discussion of the four cases in the last part of the proof. For completeness of arguments as well as convenience of readers, we give a detailed proof of the theorem.

Proof of Theorem 2.1.. Let ๐œ™โˆˆ๐ถ0max{โ„“,โ„Ž}(โ„),๐œ™โฉพ0, and ๎‚ป1๐œ™(๐‘ )=as๐‘ โฉฝ1,0as๐‘ โฉพ2.(2.11) Suppose that there exists a positive constant ๐ถ such that ||๐œ™๎…ž||(๐‘ )โฉฝ๐ถ๐œ™1/๐‘ž1||๐œ™(๐‘ ),(โ„“)||(๐‘ )โฉฝ๐ถ๐œ™1/๐‘ž1||๐œ™(๐‘ ),๎…ž||(๐‘ )โฉฝ๐ถ๐œ™1/๐‘ž2||๐œ™(๐‘ ),(โ„Ž)||(๐‘ )โฉฝ๐ถ๐œ™1/๐‘ž2(๐‘ ).(2.12)
In order to find such a function, one also assume that, for 3/2<๐‘ <2, ๐œ™(๐‘ )=(2โˆ’๐‘ )๐›ฟ with ๐›ฟ>max{โ„“๐‘ž1/(๐‘ž1โˆ’1),โ„Ž๐‘ž2/(๐‘ž2โˆ’1)}.
Let ๐œ“๐‘…๎‚ต(๐‘ฅ,๐‘ก)=๐œ™|๐‘ก|2+|๐‘ฅ|2๐œŽ๐‘…2๐œŽ๎‚ถ,๐‘…>0,(2.13) the value of the parameter ๐œŽ>0 will be determined below. Now putting ๐œ“=๐œ“๐‘…(๐‘ฅ,๐‘ก) in (2.4) and (2.5) and letting II=๎€œ|๐‘ข|๐‘ž1๐œ“๐‘…๐‘‘๐‘ฅ๐‘‘๐‘ก,III=๎€œ|๐‘ฃ|๐‘ž2๐œ“๐‘…๐‘‘๐‘ฅ๐‘‘๐‘ก,(2.14) we have III๎€œโฉฝโˆ’๐œ•๐œ“๐‘…๎€œ๐œ•๐‘ก๐‘ข๐‘‘๐‘ฅ๐‘‘๐‘กโˆ’๐‘ข๐ฟโˆ—๎€บ๐œ“๐‘…๎€ป๐‘‘๐‘ฅ๐‘‘๐‘ก,(2.15)II๎€œโฉฝโˆ’๐œ•๐œ“๐‘…๎€œ๐œ•๐‘ก๐‘ฃ๐‘‘๐‘ฅ๐‘‘๐‘กโˆ’๐‘ฃ๐‘€โˆ—๎€บ๐œ“๐‘…๎€ป๐‘‘๐‘ฅ๐‘‘๐‘ก.(2.16)
The Hรถlder inequality implies โˆ’๎€œ๐œ•๐œ“๐‘…๐œ•๐‘ก๐‘ข๐‘‘๐‘ฅ๐‘‘๐‘กโฉฝ๐ถ0๎€œsupp๐œ•๐œ“๐‘…๐œ•๐‘ก|๐‘ข|๐œ“1/๐‘ž1๐‘…|๐‘ก|๐‘…2๐œŽ๐‘‘๐‘ฅ๐‘‘๐‘กโฉฝ๐ถ1โŽงโŽชโŽจโŽชโŽฉ๎€œsupp๐œ•๐œ“๐‘…๐œ•๐‘ก|๐‘ข|๐‘ž1๐œ“๐‘…โŽซโŽชโŽฌโŽชโŽญ๐‘‘๐‘ฅ๐‘‘๐‘ก1/๐‘ž1โ‹…โŽงโŽชโŽจโŽชโŽฉ๎€œsupp๐œ•๐œ“๐‘…1๐œ•๐‘ก๐‘…๐œŽ๐‘žโ€ฒ1โŽซโŽชโŽฌโŽชโŽญ๐‘‘๐‘ฅ๐‘‘๐‘ก1/๐‘žโ€ฒ1โฉฝ๐ถ2โŽงโŽชโŽจโŽชโŽฉ๎€œsupp๐œ•๐œ“๐‘…๐œ•๐‘ก|๐‘ข|๐‘ž1๐œ“๐‘…โŽซโŽชโŽฌโŽชโŽญ๐‘‘๐‘ฅ๐‘‘๐‘ก1/๐‘ž1โ‹…๎€ท๐‘…๐‘+๐œŽโˆ’๐œŽ๐‘ž1/(๐‘ž1โˆ’1)๎€ธ(๐‘ž1โˆ’1)/๐‘ž1,โˆ’๎€œ๐‘ข๐ฟโˆ—๎€บ๐œ“๐‘…๎€ป๐‘‘๐‘ฅ๐‘‘๐‘กโฉฝ๐ถ3๎‚ป๎€œฮฅ1|๐‘ข|๐‘ž1๐œ“๐‘…๎‚ผ๐‘‘๐‘ฅ๐‘‘๐‘ก1/๐‘ž1โ‹…๎€ท๐‘…๐‘+๐œŽโˆ’โ„“๐‘ž1/(๐‘ž1โˆ’1)๎€ธ(๐‘ž1โˆ’1)/๐‘ž1,(2.17) where ฮฅ1={(๐‘ฅ,๐‘ก)โˆถ๐‘กโˆˆโ„,๐ท๐›ผ๐‘ฅ๐œ“๐‘…(๐‘ฅ,๐‘ก)โ‰ 0forsome๐›ผ} and ๐‘ž๎…ž1=๐‘ž1/(๐‘ž1โˆ’1). It is essential here that the operator ๐ฟโˆ— contains the derivatives of order โ„“ only. It is obvious that ๎‚ตsupp๐œ•๐œ“๐‘…๐œ•๐‘กโˆชฮฅ1๎‚ถโŠ‚ฮฃโ‰œ{(๐‘ฅ,๐‘ก)โˆถ๐‘กโˆˆโ„,|๐‘ก|2+|๐‘ฅ|2๐œŽ>๐‘…2๐œŽ}, and therefore inequality (2.15) implies that IIIโฉฝ๐ถ4๎‚ป๎€œฮฃ|๐‘ข|๐‘ž1๐œ“๐‘…๎‚ผ๐‘‘๐‘ฅ๐‘‘๐‘ก1/๐‘ž1โ‹…๐‘…(๐‘+๐œŽ)(๐‘ž1โˆ’1)/๐‘ž1๎€ท๐‘…โˆ’๐œŽ+๐‘…โˆ’โ„“๎€ธ(2.18)โฉฝ๐ถ4๎‚ป๎€œฮฃ|๐‘ข|๐‘ž1๐œ“๐‘…๎‚ผ๐‘‘๐‘ฅ๐‘‘๐‘ก1/๐‘ž1๐‘…๐ด(2.19)โฉฝ๐ถ4II1/๐‘ž1๐‘…๐ด(2.20) with ๐ด=(๐‘+๐œŽ)(๐‘ž1โˆ’1)/๐‘ž1โˆ’min{๐œŽ,โ„“}. Similarly, IIโฉฝ๐ถ5๎‚ป๎€œฮฃ|๐‘ฃ|๐‘ž2๐œ“๐‘…๎‚ผ๐‘‘๐‘ฅ๐‘‘๐‘ก1/๐‘ž2๐‘…(๐‘+๐œŽ)(๐‘ž2โˆ’1)/๐‘ž2๎€ท๐‘…โˆ’๐œŽ+๐‘…โˆ’โ„Ž๎€ธ(2.21)โฉฝ๐ถ5๎‚ป๎€œฮฃ|๐‘ฃ|๐‘ž2๐œ“๐‘…๎‚ผ๐‘‘๐‘ฅ๐‘‘๐‘ก1/๐‘ž2๐‘…๐ต(2.22)โฉฝ๐ถ5III1/๐‘ž2๐‘…๐ต(2.23) with ๐ต=(๐‘+๐œŽ)(๐‘ž2โˆ’1)/๐‘ž2โˆ’min{๐œŽ,โ„Ž}. Then (2.20) and (2.23) lead to II(๐‘ž1๐‘ž2โˆ’1)/๐‘ž1๐‘ž2โฉฝ๐ถ6๐‘…๐ต+๐ด1/๐‘ž2,III(๐‘ž1๐‘ž2โˆ’1)/๐‘ž1๐‘ž2โฉฝ๐ถ7๐‘…๐ด+๐ต1/๐‘ž1.(2.24)
We consider the following cases. Case 1. ๐ต+๐ด(1/๐‘ž2)<0. Let ๐‘…โ†’+โˆž in the first inequality of (2.24), we obtain ๎€œ|๐‘ข|๐‘ž1๐‘‘๐‘ฅ๐‘‘๐‘ก=0,(2.25) which implies ๐‘ขโ‰ก0. Combining with inequality (2.20) or equality (2.4), we get that โˆซ|๐‘ฃ|๐‘ž2๐‘‘๐‘ฅ๐‘‘๐‘ก=0. Then ๐‘ฃโ‰ก0.Case 2. ๐ด+๐ต(1/๐‘ž1)<0. Inequality (2.24) implies ๐‘ฃโ‰ก0. The inequality (2.23) or equality (2.5) leads that ๐‘ขโ‰ก0.Case 3. ๐ต+๐ด(1/๐‘ž2)=0. By (2.22) and (2.19), we have IIโฉฝ๐ถ8๎‚ป๎€œฮฃ|๐‘ข|๐‘ž1๐œ“๐‘…๎‚ผ๐‘‘๐‘ฅ๐‘‘๐‘ก1/๐‘ž1๐‘ž2๐‘…๐ต+๐ด1/๐‘ž2=๐ถ8๎‚ป๎€œฮฃ|๐‘ข|๐‘ž1๐œ“๐‘…๎‚ผ๐‘‘๐‘ฅ๐‘‘๐‘ก1/๐‘ž1๐‘ž2.(2.26) And, from (2.24), we obtain that โˆซ|๐‘ข|๐‘ž1๐‘‘๐‘ฅ๐‘‘๐‘ก converge. Then, as ๐‘…โ†’+โˆž, ๎€œฮฃ|๐‘ข|๐‘ž1๐‘‘๐‘ฅ๐‘‘๐‘กโŸถ0.(2.27) Then ๐‘ขโ‰ก0 and (2.20) implies ๐‘ฃโ‰ก0.Case 4. ๐ด+๐ต(1/๐‘ž1)=0. Similarly to Case 3, the second inequality of (2.24) implies โˆซ|๐‘ฃ|๐‘ž๐‘‘๐‘ฅ๐‘‘๐‘ก converging. ๐‘ฃโ‰ก0 follows from (2.19) and (2.22). Then by (2.23) or (2.5), ๐‘ขโ‰ก0.
Taking ๐œŽ=min{โ„“,โ„Ž}, Cases 1 and 3: ๐ต+๐ด(1/๐‘ž2)โฉฝ0 is equivalent to ๐‘/min{โ„“,โ„Ž}โฉฝ(๐‘ž1+1)/(๐‘ž1๐‘ž2โˆ’1), Cases 2 and 4: ๐ด+๐ต(1/๐‘ž1)โฉฝ0 is ๐‘/min{โ„“,โ„Ž}โฉฝ(๐‘ž2+1)/(๐‘ž1๐‘ž2โˆ’1). So the union of Cases 1โ€“4 is just the set ฮ“1.
Similarly, taking ๐œŽ=max{โ„“,โ„Ž}, we obtain that the union of Cases 1โ€“4 is equivalent to the set ฮ“2. Then we get the result.

3. Blow-Up Rate Estimates for Parabolic Systems

As an immediate application of Corollary 2.3, the range of the exponents ๐‘,๐‘ž in blow-up rates for the system (1.1) is also extended. We have the following theorem.

Theorem 3.1. Let (๐‘ข,๐‘ฃ) be a solution of (1.1) which blows up at a finite time ๐‘‡. Then there is a constant ๐ถ>0 such that sup๐‘ฅโˆˆโ„๐‘||||๐‘ข(๐‘ฅ,๐‘ก)โฉฝ๐ถ(๐‘‡โˆ’๐‘ก)โˆ’(๐‘+1)/(๐‘๐‘žโˆ’1),sup๐‘ฅโˆˆโ„๐‘||||๐‘ฃ(๐‘ฅ,๐‘ก)โฉฝ๐ถ(๐‘‡โˆ’๐‘ก)โˆ’(๐‘ž+1)/(๐‘๐‘žโˆ’1)(3.1) for ๐‘๎‚ป2๐‘šโฉฝmax๐‘+1,๐‘๐‘žโˆ’1๐‘ž+1๎‚ผ๐‘๐‘žโˆ’1.(3.2)

Since the proof of Theorem 3.1 is completely similar to Theorem 3.1 in [15], we omit it. Refer to [15] for all the details.

Acknowledgment

The first author was supported by Fundamental Research Funds for the Central Universities (Grant no. 2010121006). The second author was supported by NSFC (Grant no. 10901059). The third author was supported by NSFC (Grant nos. 10821067 and 11001277), RFDP (Grant no. 200805581023), Research Fund for the Doctoral Program of Guangdong Province of China (Grant no. 9451027501002416), and Fundamental Research Funds for the Central Universities.