Abstract

We prove a higher-order inequality of Hardy type for functions in anisotropic Sobolev spaces that vanish at the boundary of the space domain. This is an important calculus tool for the study of initial-boundary-value problems of symmetric hyperbolic systems with characteristic boundary.

1. Notations and Main Result

For 𝑛β‰₯2, let ℝ𝑛+ denote the 𝑛-dimensional positive half-space ℝ𝑛+ξ€½ξ€·π‘₯∢=π‘₯=1,π‘₯ξ…žξ€Έ,π‘₯1ξ€·π‘₯>0,π‘₯β€²βˆΆ=2,…,π‘₯π‘›ξ€Έβˆˆβ„π‘›βˆ’1ξ€Ύ.(1.1) Let 𝜎∈𝐢∞(ℝ+) be a function such that 𝜎(π‘₯1)=π‘₯1 close to π‘₯1=0, and 𝜎(π‘₯1)=1 for π‘₯1β‰₯1. For 𝑗=1,2,…,𝑛, we set 𝑍1ξ€·π‘₯∢=𝜎1ξ€Έπœ•1,π‘π‘—βˆΆ=πœ•π‘—,for𝑗β‰₯2.(1.2) Then, for every multi-index 𝛼=(𝛼1,…,𝛼𝑛)βˆˆβ„•π‘›, the conormal derivative 𝑍𝛼 is defined by π‘π›ΌβˆΆ=𝑍𝛼11⋯𝑍𝛼𝑛𝑛.(1.3) For every positive integer π‘š the anisotropic Sobolev space π»π‘šβˆ—(ℝ𝑛+) is defined as π»π‘šβˆ—ξ€·β„π‘›+ξ€Έξ€½βˆΆ=π‘€βˆˆπΏ2ℝ𝑛+ξ€ΈβˆΆπ‘π›Όπœ•π‘˜1π‘€βˆˆπΏ2ℝ𝑛+ξ€Έξ€Ύ.,|𝛼|+2π‘˜β‰€π‘š(1.4) In π»π‘šβˆ—(ℝ𝑛+) we introduce the norm ‖𝑀‖2π»π‘šβˆ—ξ€·β„π‘›+ξ€Έξ“βˆΆ=|𝛼|+2π‘˜β‰€π‘šβ€–β€–π‘π›Όπœ•π‘˜1𝑀‖‖2𝐿2ℝ𝑛+ξ€Έ.(1.5) The space π»π‘šβˆ—(ℝ𝑛+), endowed with its norm (1.5) is a Hilbert space. We also introduce a second anisotropic Sobolev space. For every positive integer π‘š, the space π»π‘šβˆ—βˆ—(ℝ𝑛+) is defined as π»π‘šβˆ—βˆ—ξ€·β„π‘›+ξ€Έξ€½βˆΆ=π‘€βˆˆπΏ2ℝ𝑛+ξ€ΈβˆΆπ‘π›Όπœ•π‘˜1π‘€βˆˆπΏ2ℝ𝑛+ξ€Έξ€Ύ.,|𝛼|+2π‘˜β‰€π‘š+1,|𝛼|β‰€π‘š(1.6) In particular, 𝐻1βˆ—βˆ—(Ξ©)=𝐻1(Ξ©). In π»π‘šβˆ—βˆ—(ℝ𝑛+), we introduce the natural norm ‖𝑀‖2π»π‘šβˆ—βˆ—ξ€·β„π‘›+ξ€Έξ“βˆΆ=|𝛼|+2π‘˜β‰€π‘š+1,|𝛼|β‰€π‘šβ€–β€–π‘π›Όπœ•π‘˜1𝑀‖‖2𝐿2(ℝ𝑛+).(1.7) The space π»π‘šβˆ—βˆ—(ℝ𝑛+), endowed with its norm (1.7) is a Hilbert space. For the sake of convenience we also set 𝐻0βˆ—(ℝ𝑛+)=𝐻0βˆ—βˆ—(ℝ𝑛+)=𝐿2(ℝ𝑛+). We observe that π»π‘šξ€·β„π‘›+ξ€Έβ†ͺπ»π‘šβˆ—βˆ—ξ€·β„π‘›+ξ€Έβ†ͺπ»π‘šβˆ—ξ€·β„π‘›+ξ€ΈβŠ‚π»π‘šπ‘™π‘œπ‘ξ€·β„π‘›+𝐻,(1.8)π‘šβˆ—ξ€·β„π‘›+ξ€Έβ†ͺ𝐻[π‘š/2]ℝ𝑛+ξ€Έ,π»π‘šβˆ—βˆ—ξ€·β„π‘›+ξ€Έβ†ͺ𝐻[(π‘š+1)/2]ℝ𝑛+ξ€Έ,(1.9) where [β‹…] denotes the integer part (except for π»π‘šπ‘™π‘œπ‘(ℝ𝑛+), all imbeddings are continuous).

The anisotropic spaces π»π‘šβˆ—,π»π‘šβˆ—βˆ— are the natural function spaces for the study of initial-boundary-value problems of symmetric hyperbolic systems with characteristic boundary, see [1–6]. In fact, for such problems, the full regularity (i.e., solvability in the usual Sobolev spaces π»π‘š) cannot be expected generally because of the possible loss of derivatives in the normal direction to the characteristic boundary, see [7, 8]. The introduction of the anisotropic Sobolev spaces π»π‘šβˆ—,π»π‘šβˆ—βˆ— is motivated by the observation that the one-order gain of normal differentiation should be compensated by two-order loss of conormal differentiation.

The equations of ideal magnetohydrodynamics provide an important example of ill-posedness in Sobolev spaces π»π‘š, see [7]. Application to MHD of π»π‘šβˆ— and π»π‘šβˆ—βˆ— spaces may be found in [9–13]. For an extensive study of such spaces we refer the reader to [2, 3, 14, 15] and references therein. Function spaces of this type have also been considered in [16, 17].

The purpose of this note is the proof of the following Theorems 1.1 and 1.2. These results are an important calculus tool in the use of the anisotropic spaces π»π‘šβˆ—,π»π‘šβˆ—βˆ—, and accordingly for the study of initial-boundary-value problems of symmetric hyperbolic systems with characteristic boundary. Typically, in such problems one has to deal with terms of the form π΄πœ•1π‘ˆ, where 𝐴 is a real 𝑑×𝑑 matrix-valued function, and π‘ˆ is a vector function with 𝑑 components. The matrix 𝐴 admits the decomposition 𝐴=𝐴1+𝐴2,𝐴1βŽ›βŽœβŽœβŽπ΄βˆΆ=𝐼,𝐼0⎞⎟⎟⎠00,𝐴2∣π‘₯1=0=0,(1.10) with 𝐴𝐼,𝐼 invertible in a neighborhood of the boundary {π‘₯1=0}. Hence, one may write 𝐴2πœ•1π‘ˆ=𝐻𝑍1π‘ˆ,(1.11) where 𝐻(π‘₯)=𝜎(π‘₯1)βˆ’1𝐴2(π‘₯), and looks for an estimate of 𝐻𝑍1π‘ˆ in π»π‘šβˆ—,π»π‘šβˆ—βˆ—, as sharp as possible. Given suitable estimates for the product of functions, the problem is then the estimate of 𝐻 in π»π‘šβˆ— and π»π‘šβˆ—βˆ—. This motivates the following results.

Theorem 1.1. Let π‘šβ‰₯2. Let π‘’βˆˆπ»π‘šβˆ—(ℝ𝑛+)∩𝐻10(ℝ𝑛+) be a function, and let 𝐻 be defined by 𝐻π‘₯1ξ€Έ=𝑒π‘₯,π‘₯β€²1ξ€Έ,π‘₯β€²πœŽξ€·π‘₯1ξ€Έ.(1.12) Then β€–π»β€–π»βˆ—π‘šβˆ’2(ℝ𝑛+)β‰€πΆβ€–π‘’β€–π»π‘šβˆ—ξ€·β„π‘›+ξ€Έ.(1.13)

Proof. For all integers π‘šβ‰₯1, the space 𝐢∞(0)(R𝑛+) (𝐢∞(0)(ℝ𝑛+) denotes the set of restriction to ℝ𝑛+ of functions in 𝐢∞0(ℝ𝑛+)) is dense in π»π‘šβˆ—(ℝ𝑛+), see [4]. Hence, without loss of generality, we may assume that 𝑒 is supported in a small neighborhood of π‘₯1=0 where 𝜎(π‘₯1)=π‘₯1. For the proof of the theorem we use an induction argument somehow inspired from [18].
The case π‘š=2 follows from the classical Hardy inequality, see [19]. Given any π‘₯ξ…žβˆˆβ„π‘›βˆ’1, the Hardy inequality yields ξ€œβˆž0||||𝑒π‘₯1,π‘₯ξ…žξ€Έπ‘₯1||||2𝑑π‘₯1ξ€œβ‰€4∞0||πœ•1𝑒π‘₯1,π‘₯ξ…žξ€Έ||2𝑑π‘₯1,βˆ€π‘’βˆˆπ»10ℝ𝑛+ξ€Έ.(1.14) Integrating in π‘₯ξ…ž and using (1.9) with π‘š=2 we get ‖‖‖𝑒π‘₯1‖‖‖𝐿2(ℝ𝑛+)≀2‖𝑒‖𝐻1(ℝ𝑛+)≀𝐢‖𝑒‖𝐻2βˆ—(ℝ𝑛+).(1.15) Let us now assume that inequality (1.13) holds for a given π‘šβ‰₯2, and suppose that π‘’βˆˆπ»βˆ—π‘š+1(ℝ𝑛+)∩𝐻10(ℝ𝑛+). A simple computation shows that for π‘˜βˆˆβ„•, πœ•π‘˜1𝑒π‘₯1ξ‚Ά=𝑓π‘₯1π‘˜+1,(1.16) with 𝑓=π‘˜ξ“β„Ž=0βŽ›βŽœβŽœβŽπ‘˜β„ŽβŽžβŽŸβŽŸβŽ πœ•1π‘˜βˆ’β„Žπ‘’β„Ž!(βˆ’1)β„Žπ‘₯1π‘˜βˆ’β„Ž.(1.17) From its definition, we see that 𝑓=0 for π‘₯1=0. Next, we obtain the identity πœ•1𝑓=π‘˜ξ“β„Ž=0βŽ›βŽœβŽœβŽπ‘˜β„ŽβŽžβŽŸβŽŸβŽ πœ•1π‘˜+1βˆ’β„Žπ‘’β„Ž!(βˆ’1)β„Žπ‘₯1π‘˜βˆ’β„Ž+π‘˜βˆ’1ξ“β„Ž=0βŽ›βŽœβŽœβŽπ‘˜β„ŽβŽžβŽŸβŽŸβŽ πœ•1π‘˜βˆ’β„Žπ‘’β„Ž!(βˆ’1)β„Žπ‘₯1π‘˜βˆ’β„Žβˆ’1(π‘˜βˆ’β„Ž)=πœ•1π‘˜+1𝑒π‘₯π‘˜1+π‘˜ξ“β„Ž=1βŽ›βŽœβŽœβŽπ‘˜β„ŽβŽžβŽŸβŽŸβŽ πœ•1π‘˜+1βˆ’β„Žπ‘’β„Ž!(βˆ’1)β„Žπ‘₯1π‘˜βˆ’β„Ž+π‘˜βˆ’1ξ“β„Ž=0βŽ›βŽœβŽœβŽπ‘˜βŽžβŽŸβŽŸβŽ πœ•β„Ž+11π‘˜βˆ’β„Žπ‘’(β„Ž+1)!(βˆ’1)β„Žπ‘₯1π‘˜βˆ’β„Žβˆ’1=πœ•1π‘˜+1𝑒π‘₯π‘˜1.(1.18) We deduce from (1.18) that 𝑓π‘₯1,π‘₯ξ…žξ€Έ=ξ€œπ‘₯10πœ•1π‘˜+1𝑒𝑦1,π‘₯ξ…žξ€Έπ‘¦π‘˜1𝑑𝑦1,(1.19) which by substitution in (1.16) yields the identity πœ•π‘˜1𝑒π‘₯1ξ‚Άξ€·π‘₯1,π‘₯ξ…žξ€Έ=∫π‘₯10πœ•1π‘˜+1𝑒𝑦1,π‘₯ξ…žξ€Έπ‘¦π‘˜1𝑑𝑦1π‘₯1π‘˜+1.(1.20) Given any multi-index 𝛼=(𝛼1,…,𝛼𝑛)βˆˆβ„•π‘›, with 𝛼1=0, we also get π‘π›Όπœ•π‘˜1𝑒π‘₯1ξ‚Άβˆ«(π‘₯)=π‘₯10π‘π›Όπœ•1π‘˜+1𝑒𝑦1,π‘₯ξ…žξ€Έπ‘¦π‘˜1𝑑𝑦1π‘₯1π‘˜+1,(1.21) from which it readily follows that ||||π‘π›Όπœ•π‘˜1𝑒π‘₯1ξ‚Ά||||β‰€βˆ«(π‘₯)π‘₯10||π‘π›Όπœ•1π‘˜+1𝑒𝑦1,π‘₯ξ…žξ€Έ||𝑑𝑦1π‘₯1.(1.22) Setting 𝑔π‘₯1,π‘₯ξ…žξ€Έ=ξ€œπ‘₯10||π‘π›Όπœ•1π‘˜+1𝑒𝑦1,π‘₯ξ…žξ€Έ||𝑑𝑦1(1.23) the Hardy inequality yields ξ€œβˆž0||||𝑔π‘₯1ξ€·π‘₯1,π‘₯ξ…žξ€Έ||||2𝑑π‘₯1ξ€œβ‰€4∞0||πœ•1𝑔π‘₯1,π‘₯ξ…žξ€Έ||2𝑑π‘₯1.(1.24) From (1.22) and (1.24) we deduce β€–β€–β€–π‘π›Όπœ•π‘˜1𝑒π‘₯1ξ‚Άβ€–β€–β€–2𝐿2ℝ𝑛+‖‖𝑍≀4π›Όπœ•1π‘˜+1𝑒‖‖2𝐿2ℝ𝑛+ξ€Έ.(1.25) It follows that β€–β€–β€–π‘π›Όπœ•π‘˜1𝑒π‘₯1‖‖‖𝐿2(ℝ𝑛+)β‰€πΆβ€–π‘’β€–π»βˆ—π‘š+1(ℝ𝑛+)(1.26) for every multi-index 𝛼=(𝛼1,…,𝛼𝑛)βˆˆβ„•π‘›, with 𝛼1=0, and π‘˜βˆˆβ„• such that |𝛼|+2π‘˜β‰€π‘šβˆ’1.
In order to treat the case 𝛼1β‰₯1, we use an induction argument. We first invert the position of conormal and normal derivatives in the norm (1.5) to get ‖‖‖𝑒π‘₯1β€–β€–β€–2π»βˆ—π‘šβˆ’1(ℝ𝑛+)≀𝐢|𝛼|+2π‘˜β‰€π‘šβˆ’1β€–β€–β€–πœ•π‘˜1𝑍𝛼𝑒π‘₯1ξ‚Άβ€–β€–β€–2𝐿2(ℝ𝑛+)‖‖‖𝑒+𝐢π‘₯1β€–β€–β€–π»βˆ—π‘šβˆ’2(ℝ𝑛+),(1.27) where the last term comes from the control of the commutator. Then, from the inductive assumption ‖‖‖𝑒π‘₯1β€–β€–β€–2π»βˆ—π‘šβˆ’1(ℝ𝑛+)≀𝐢|𝛼|+2π‘˜β‰€π‘šβˆ’1β€–β€–β€–πœ•π‘˜1𝑍𝛼𝑒π‘₯1ξ‚Άβ€–β€–β€–2𝐿2ℝ𝑛+ξ€Έ+πΆβ€–π‘’β€–π»π‘šβˆ—(ℝ𝑛+).(1.28) Let us consider the estimate |𝛼|+2π‘˜β‰€π‘šβˆ’1β€–β€–β€–πœ•π‘˜1𝑍𝛼𝑒π‘₯1‖‖‖𝐿2(ℝ𝑛+)β‰€πΆβ€–π‘’β€–π»βˆ—π‘š+1(ℝ𝑛+).(1.29) Notice that (1.29) holds true if 𝛼1=0, because of (1.26). Assume that (1.29) is true for every multi-index 𝛼=(𝛼1,…,𝛼𝑛)βˆˆβ„•π‘› and π‘˜βˆˆβ„• such that |𝛼|+2π‘˜β‰€π‘šβˆ’1 and 0≀𝛼1≀𝛽1βˆ’1, for some 1≀𝛽1β‰€π‘šβˆ’1. We have |𝛼|+2π‘˜β‰€π‘šβˆ’1,1≀𝛼1≀𝛽1β€–β€–β€–πœ•π‘˜1𝑍𝛼𝑒π‘₯1ξ‚Άβ€–β€–β€–2𝐿2ℝ𝑛+ξ€Έ=|𝛼|+2π‘˜β‰€π‘šβˆ’1,1≀𝛼1≀𝛽1β€–β€–β€–πœ•π‘˜1𝑍𝛼′𝑍𝛼1βˆ’1π‘₯1πœ•1𝑒π‘₯1ξ‚Άβ€–β€–β€–2𝐿2ℝ𝑛+ξ€Έ=|𝛼|+2π‘˜β‰€π‘šβˆ’1,1≀𝛼1≀𝛽1β€–β€–β€–πœ•π‘˜1𝑍𝛼′𝑍𝛼1βˆ’1ξ‚΅πœ•1π‘’π‘’βˆ’π‘₯1ξ‚Άβ€–β€–β€–2𝐿2(ℝ𝑛+)≀𝐢|𝛼|+2π‘˜β‰€π‘šβˆ’1,1≀𝛼1≀𝛽1ξƒ©β€–β€–πœ•1π‘˜+1𝑍𝛼′𝑍𝛼1βˆ’1𝑒‖‖2𝐿2ℝ𝑛+ξ€Έ+β€–β€–β€–πœ•π‘˜1𝑍𝛼′𝑍𝛼1βˆ’1𝑒π‘₯1ξ‚Άβ€–β€–β€–2𝐿2(ℝ𝑛+)ξƒͺ≀𝐢‖𝑒‖2π»π‘šβˆ—ξ€·β„π‘›+ξ€Έ(1.30) because for the first term we have |𝛼|βˆ’1+2(π‘˜+1)β‰€π‘š, and for the second term we can apply estimate (1.13), true for π‘š by inductive assumption. Hence (1.29) is true also for 𝛼1=𝛽1. We deduce that (1.29) holds for every multi-index 𝛼=(𝛼1,…,𝛼𝑛)βˆˆβ„•π‘›, and π‘˜βˆˆβ„• such that |𝛼|+2π‘˜β‰€π‘šβˆ’1.
Therefore, from (1.28) and (1.29) we get ‖‖‖𝑒π‘₯1β€–β€–β€–π»βˆ—π‘šβˆ’1(ℝ𝑛+)β‰€πΆβ€–π‘’β€–π»βˆ—π‘š+1(ℝ𝑛+).(1.31) The proof of Theorem 1.1 is complete.

In the second anisotropic space π»π‘šβˆ—βˆ—(Ξ©) we have the following results.

Theorem 1.2. Let π‘’βˆˆπ»π‘šβˆ—βˆ—(ℝ𝑛+)∩𝐻10(ℝ𝑛+), for π‘šβ‰₯1, and let 𝐻 be the function defined in (1.12).(1)If π‘š=1, then ‖𝐻‖𝐿2(ℝ𝑛+)≀𝐢‖𝑒‖𝐻1(ℝ𝑛+)≀𝐢‖𝑒‖𝐻1βˆ—βˆ—(ℝ𝑛+).(1.32)(2)If π‘š=2, then ‖𝐻‖𝐻1βˆ—(ℝ𝑛+)≀𝐢‖𝑒‖𝐻2βˆ—βˆ—(ℝ𝑛+).(1.33)(3)If π‘šβ‰₯3, then β€–π»β€–π»π‘šβˆ’2βˆ—βˆ—(ℝ𝑛+)β‰€πΆβ€–π‘’β€–π»π‘šβˆ—βˆ—(ℝ𝑛+).(1.34)

Proof. The proof of (1.32) follows by direct application of Hardy's inequality; then (1.33) follows by applying (1.32) to 𝑍𝑒. In case of π‘šβ‰₯3 the proof is similar to that of Theorem 1.1, hence we omit the details.

Acknowledgment

The work was supported by the National Research Project PRIN 2007 β€œEquations of Fluid Dynamics of Hyperbolic Type and Conservation Laws.”