`International Journal of Differential EquationsVolume 2012, Article ID 845945, 8 pageshttp://dx.doi.org/10.1155/2012/845945`
Research Article

## Analytical Study of Nonlinear Fractional-Order Integrodifferential Equation: Revisit Volterra's Population Model

1Department of Mathematical Sciences, University of Karachi, Karachi 75270, Pakistan
2Department of Mathematics, COMSATS Institute of Information Technology, Lahore, Pakistan

Received 30 May 2012; Accepted 17 October 2012

Copyright © 2012 Najeeb Alam Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. N. A. Khan, N. U. Khan, M. Ayaz, and J. A. Siddiqui, “A numerical comparision for the fractional order Lotka-Voltrra equations,” World Applied Sciences Journal, vol. 12, no. 12, pp. 2240–2246, 2011.
2. F. M. Scudo, “Vito Volterra and theoretical ecology,” Theoretical Population Biology, vol. 2, no. 1, pp. 1–23, 1971.
3. R. D. Small, “Population growth in a closed system,” SIAM Review, vol. 25, no. 1, pp. 93–95, 1983.
4. H. Xu, “Analytical approximations for a population growth model with fractional order,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 5, pp. 1978–1983, 2009.
5. N. A. Khan, A. Ara, and M. Jamil, “Approximations of the nonlinear Volterra's population model by an efficient numerical method,” Mathematical Methods in the Applied Sciences, vol. 34, no. 14, pp. 1733–1738, 2011.
6. K. Parand and M. Razzaghi, “Rational Chebyshev tau method for solving Volterra's population model,” Applied Mathematics and Computation, vol. 149, no. 3, pp. 893–900, 2004.
7. K. G. TeBeest, “Numerical and analytical solutions of Volterra's population model,” SIAM Review, vol. 39, no. 3, pp. 484–493, 1997.
8. A. M. Wazwaz, “Analytical approximations and Padé approximants for Volterra's population model,” Applied Mathematics and Computation, vol. 100, no. 1, pp. 13–25, 1999.
9. K. Parand and G. Hojjati, “Solving Volterra's population model using new second derivative multistep methods,” American Journal of Applied Sciences, vol. 5, no. 8, pp. 1019–1022, 2008.
10. K. Parand, Z. Delafkar, N. Pakniat, A. Pirkhedri, and M. K. Haji, “Collocation method using sinc and Rational Legendre functions for solving Volterra's population model,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 4, pp. 1811–1819, 2011.
11. H. R. Marzban, S. M. Hoseini, and M. Razzaghi, “Solution of Volterra's population model via block-pulse functions and Lagrange-interpolating polynomials,” Mathematical Methods in the Applied Sciences, vol. 32, no. 2, pp. 127–134, 2009.
12. S. T. Mohyud-Din, A. Yildirim, and Y. Gülkanat, “Analytical solution of Volterra's population model,” Journal of King Saud University—Science, vol. 22, no. 4, pp. 247–250, 2010.
13. N. A. Khan, A. Ara, and M. Jamil, “An efficient approach for solving the Riccati equation with fractional orders,” Computers and Mathematics with Applications, vol. 61, no. 9, pp. 2683–2689, 2011.
14. N. A. Khan, M. Jamil, A. Ara, and N. U. Khan, “On efficient method for system of fractional differential equations,” Advances in Difference Equations, vol. 2011, Article ID 303472, 2011.
15. N. A. Khan, M. Jamil, A. Ara, and S. Das, “Explicit solution of time-fractional batch reactor system,” International Journal of Chemical Reactor Engineering, vol. 9, article A91, 2011.
16. J. H. He, “Coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37–43, 2000.