Table of Contents Author Guidelines Submit a Manuscript
International Journal of Digital Multimedia Broadcasting
Volume 2010, Article ID 934896, 8 pages
http://dx.doi.org/10.1155/2010/934896
Research Article

A Software-Defined Radio System for Intravehicular Wireless Sensor Networks

Information & System Sciences Lab, HRL Laboratories, LLC, Malibu, CA 90265-4797, USA

Received 8 April 2010; Accepted 10 August 2010

Academic Editor: Ronan Farrell

Copyright © 2010 Xiangming Kong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Leen and D. Heffernan, “Vehicles without wires,” Computing and Control Engineering Journal, vol. 12, no. 5, pp. 205–211, 2001. View at Google Scholar · View at Scopus
  2. T. Elbatt, C. Saraydar, M. Ames, and T. Talty, “Potential for intra-vehicle wireless automotive sensor networks,” in Proceedings of IEEE Sarnoff Symposium, Princeton, NJ, USA, March 2006. View at Publisher · View at Google Scholar
  3. S. Roundy, P. K. Wright, and J. Rabaey, “A study of low level vibrations as a power source for wireless sensor nodes,” Computer Communications, vol. 26, no. 11, pp. 1131–1144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. O. K. Tonguz, H.-M. Tsai, T. Talty, A. Macdonald, and C. Saraydar, “RFID technology for intra-car communications: a new paradigm,” in Proceeding of IEEE Vehicular Technology Conference (VTC '06), pp. 3008–3013, Montreal, Canada, September 2006. View at Publisher · View at Google Scholar
  5. H.-M. Tsai, C. Saraydar, T. Talty, M. Ames, A. Macdonald, and O. K. Tonguz, “ZigBee-based intra-car wireless sensor network,” in Proceedings of IEEE International Conference on Communications (ICC '07), pp. 3965–3971, Glasgow, UK, June 2007. View at Publisher · View at Google Scholar
  6. W. Niu, J. Li, and T. Talty, “Ultra-wideband channel modeling for intravehicle environment,” Eurasip Journal on Wireless Communications and Networking, vol. 2009, Article ID 806209, 12 pages, 2009. View at Publisher · View at Google Scholar
  7. C. Anderson, A software defined ultra wideband transceiver testbed for communications, ranging, and imaging, Ph.D. thesis, 2006.
  8. T. Van Dam and K. Langendoen, “An adaptive energy-efficient MAC protocol for wireless sensor networks,” in Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (SenSys'03), pp. 171–180, 2003.
  9. G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks,” in Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS '04), p. 224, 2004.
  10. B. Miscopein and J. Schwoerer, “Low complexity synchronization algorithm for non-coherent UWB-IR receivers,” in Proceedings of the 65th IEEE Vehicular Technology Conference (VTC '07), pp. 2344–2348, April 2007. View at Publisher · View at Google Scholar
  11. E. A. Homier and R. A. Scholtz, “Rapid acquisition of ultra-wideband signals in the dense multipath channel,” in Proceedings of IEEE Conference on Ultra Wideband Systems and Technologies, pp. 105–109, May 2002.
  12. S. R. Aedudodla, S. Vijayakumaran, and T. F. Wong, “Timing acquisition in ultra-wideband communication systems,” IEEE Transactions on Vehicular Technology, vol. 54, no. 5, pp. 1570–1583, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Zhang, S. Wei, D. L. Goeckel, and M. Z. Win, “Rapid acquisition of ultra-wideband radio signals,” in Proceedings of the 36th Asilomar Conference on Signals Systems and Computers, pp. 712–716, November 2002.
  14. S. Gezici, E. Fishier, H. Kobayashi, H. V. Poor, and A. F. Molisch, “A rapid acquisition technique for impulse radio,” in Proceedings of IEEE Pacific RIM Conference on Communications, Computers, and Signal Processing, vol. 2, pp. 627–630, 2003.
  15. L. Reggiani and G. M. Maggio, “A reduced-complexity acquisition algorithm for UWB impulse radio,” in Proceedings of IEEE Conference on Ultra Wideband Systems and Technologies, pp. 131–135, November 2003.
  16. X. Kong and M. Ahmed, “A rapid acquisition method for impulse ultra-wideband signals,” in Proceedings of the 12th IEEE International Conference on Communication Technology (ICCT '10), Nanjing, China, November 2010.