Table of Contents Author Guidelines Submit a Manuscript
International Journal of Digital Multimedia Broadcasting
Volume 2012 (2012), Article ID 801641, 7 pages
http://dx.doi.org/10.1155/2012/801641
Research Article

Video Classification and Adaptive QoP/QoS Control for Multiresolution Video Applications on IPTV

Department of Information Communication, MingDao University, Changhua 52345, Taiwan

Received 1 February 2012; Revised 22 March 2012; Accepted 5 April 2012

Academic Editor: Pin-Han Ho

Copyright © 2012 Huang Shyh-Fang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Kamaci, Y. Altunbasak, and R. M. Mersereau, “Frame bit allocation for the H.264/AVC video coder via cauchy-density-based rate and distortion models,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 8, pp. 994–1006, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. “ISO/IEC/JTC1/SC29/WG11 MPEG 93/457,” Test Model 5, Draft Vision 1, April 1993.
  3. S. M. Canne, M. Vetterli, and V. Jacobson, “Low-complexity video coding for receiver-driven layered multicast,” IEEE Journal on Selected Areas in Communications, vol. 15, no. 6, pp. 983–1001, 1997. View at Google Scholar · View at Scopus
  4. H. Doi, Y. Serizawa, H. Tode, and H. Ikeda, “Simulation study of QoS guaranteed ATM transmission for future power system communication,” IEEE Transactions on Power Delivery, vol. 14, no. 2, pp. 342–348, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Shehu, A. Maraj, and R. M. Mitrushi, “Analysis of QoS requirements for delivering IPTV over WiMAX technology,” in Proceedings of the 18th International Conference on Software, Telecommunications and Computer Networks (SoftCOM '10), pp. 380–385, September 2010. View at Scopus
  6. H. Y. Tung, K. F. Tsang, L. T. Lee, and K. T. Ko, “QoS for mobile WiMAX networks: call admission control and bandwidth allocation,” in Proceedings of the 5th IEEE Consumer Communications and Networking Conference (CCNC '08), pp. 576–580, Las Vegas, Nev, USA, January 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Sayenko, O. Alanen, and J. Karhula, “Ensuring the QoS requirements in 802.16 scheduling,” in Proceedings of the 9th ACM Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems (ACM MSWiM '06), pp. 108–117, New York, NY, USA, October 2006. View at Scopus
  8. B. Jung, J. Choi, Y. T. Han, M. G. Kim, and M. Kang, “Centralized scheduling mechanism for enhanced end-to-end delay and QoS support in integrated architecture of EPON and WiMAX,” Journal of Lightwave Technology, vol. 28, no. 16, Article ID 5452987, pp. 2277–2288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Mei, Z. Fang, Y. Zhang, J. Zhang, and H. Xie, “A WiMax QoS oriented bandwidth allocation scheduling algorithm,” in Proceedings of the 2nd International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC '10), pp. 298–301, April 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Liao, Y. Shi, J. Chen, and J. Li, “Optimized multicast service management in a mobile WiMAX TV system,” in Proceedings of the 6th IEEE Consumer Communications and Networking Conference (CCNC '09), January 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. F. Huard, I. Inoue, A. A. Lazar, and H. Yamanaka, “Meeting QOS guarantees by end-to-end QOS monitoring and adaptation,” in Proceedings of the 5th IEEE International Symposium on High Performance Distributed Computing, pp. 348–355, Los Alamitos, Calif, USA, August 1996. View at Scopus