About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2012 (2012), Article ID 454530, 7 pages
Research Article

Research on Optimal Sensor Placement Based on Reverberation Matrix for Structural Health Monitoring

1School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, China
2Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA

Received 28 June 2012; Revised 28 September 2012; Accepted 29 September 2012

Academic Editor: Hong-Nan Li

Copyright © 2012 Hai-feng Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Adequate sensor placement plays a key role in such fields as system identification, structural control, damage detection, and structural health monitoring (SHM) of large-scale civil infrastructures. Many optimal sensor placement (OSP) methods have been developed for general optimized solution searches. Due to the limitations of equipment facilities and cost, the number of sensors to be installed in a structure is relatively few. It is very important to determine the necessary number of sensors to be installed and where to deploy these sensors. Taking into account energy attenuate during the signal propagation, combined with classic reverberation matrix method, a two-step method is proposed to determine the sensors arrangement using the scattering matrix in this paper. First, calculate the utmost distance of wave propagation on a special structure by the principle of elastic wave propagation and determine the preliminary number of sensors; second, the utmost distance and number of sensors are applied to a sensor optimization algorithm named Effective Independence Driving-Point Residue method. In the bridge benchmark model case study, it shows the validity of proposed method under a special detection system.