About this Journal Submit a Manuscript Table of Contents
International Journal of Distributed Sensor Networks
Volume 2012 (2012), Article ID 981380, 14 pages
Research Article

A Vascular-Network-Based Nonuniform Hierarchical Fault-Tolerant Routing Algorithm for Wireless Sensor Networks

1School of Automation, Chongqing University, Chongqing 400030, China
2School of Computer Science and Engineering, Chongqing Three Gorges University, Chongqing 404100, China
3School of Software Engineering, Chongqing University, Chongqing 400030, China

Received 10 April 2012; Revised 7 August 2012; Accepted 6 September 2012

Academic Editor: Mugen Peng

Copyright © 2012 Hongbing Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Fault tolerance is the key technology in wireless sensor networks which attracts many research interests. Aiming at the issue that the nodes' failures affect the network's stability and service quality, a vascular-network-based fault-tolerant routing algorithm is presented by nonuniform hierarchical clustering. According to the distribution characteristics of the vascular network and inspirations to the fault tolerance for wireless sensor networks, a mathematical model and network topology are, respectively, established. It applies the improved particle swarm optimization (IPSO) to the nonuniform hierarchical clustering, and multipaths are established between the neighbor hierarchical nodes based on the best-worst ant system (BWAS). It introduces the normalized values of the pheromone generated by the ants as the selection probabilities of transmitting paths to establish the hierarchical routing. Theoretical analysis and simulations show that the algorithm has higher packet receiving rates, lower average transmission delay, and balanced energy consumption. It has the good performance in fault tolerance and stability of data transmitting, and it avoids the hot issue in energy consumption and achieves the network load balance.