Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2010, Article ID 819414, 6 pages
http://dx.doi.org/10.1155/2010/819414
Research Article

Chronic Sleep Disturbance Impairs Glucose Homeostasis in Rats

1Department of Neuroendocrinology, Center for Behavior and Neurosciences, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands
2Department of Behavioral Physiology, Center for Behavior and Neurosciences, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands

Received 16 October 2009; Revised 22 December 2009; Accepted 2 January 2010

Academic Editor: Jessica A. Mong

Copyright © 2010 R. Paulien Barf et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. P. Cappuccio, F. M. Taggart, N.-B. Kandala et al., “Meta-analysis of short sleep duration and obesity in children and adults,” Sleep, vol. 31, no. 5, pp. 619–626, 2008. View at Google Scholar
  2. J.-P. Chaput, M. Brunet, and A. Tremblay, “Relationship between short sleeping hours and childhood overweight/obesity: results from the ‘Québec en Forme’ Project,” International Journal of Obesity, vol. 30, no. 7, pp. 1080–1085, 2006. View at Publisher · View at Google Scholar · View at PubMed
  3. J.-P. Chaput, J.-P. Després, C. Bouchard, and A. Tremblay, “Association of sleep duration with type 2 diabetes and impaired glucose tolerance,” Diabetologia, vol. 50, no. 11, pp. 2298–2304, 2007. View at Publisher · View at Google Scholar · View at PubMed
  4. D. J. Gottlieb, N. M. Punjabi, A. B. Newman et al., “Association of sleep time with diabetes mellitus and impaired glucose tolerance,” Archives of Internal Medicine, vol. 165, no. 8, pp. 863–867, 2005. View at Publisher · View at Google Scholar · View at PubMed
  5. K. L. Knutson, K. Spiegel, P. Penev, and E. Van Cauter, “The metabolic consequences of sleep deprivation,” Sleep Medicine Reviews, vol. 11, no. 3, pp. 163–178, 2007. View at Publisher · View at Google Scholar · View at PubMed
  6. P. D. Penev, “Sleep deprivation and energy metabolism: to sleep, perchance to eat?” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 14, no. 5, pp. 374–381, 2007. View at Publisher · View at Google Scholar · View at PubMed
  7. K. Spiegel, E. Tasali, R. Leproult, and E. Van Cauter, “Effects of poor and short sleep on glucose metabolism and obesity risk,” Nature Reviews Endocrinology, vol. 5, no. 5, pp. 253–261, 2009. View at Publisher · View at Google Scholar · View at PubMed
  8. J. Horne, “Short sleep is a questionable risk factor for obesity and related disorders: statistical versus clinical significance,” Biological Psychology, vol. 77, no. 3, pp. 266–276, 2008. View at Publisher · View at Google Scholar · View at PubMed
  9. S. Banks and D. F. Dinges, “Behavioral and physiological consequences of sleep restriction,” Journal of Clinical Sleep Medicine, vol. 3, no. 5, pp. 519–528, 2007. View at Google Scholar
  10. A. V. Nedeltcheva, J. M. Kilkus, J. Imperial, K. Kasza, D. A. Schoeller, and P. D. Penev, “Sleep curtailment is accompanied by increased intake of calories from snacks,” American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 126–133, 2009. View at Publisher · View at Google Scholar · View at PubMed
  11. A. Rechtschaffen and B. M. Bergmann, “Sleep deprivation in the rat by the disk-over-water method,” Behavioural Brain Research, vol. 69, no. 1-2, pp. 55–63, 1995. View at Publisher · View at Google Scholar
  12. J. Vaara, H. Kyröläinen, M. Koivu, M. Tulppo, and T. Finni, “The effect of 60-h sleep deprivation on cardiovascular regulation and body temperature,” European Journal of Applied Physiology, vol. 105, no. 3, pp. 439–444, 2009. View at Publisher · View at Google Scholar · View at PubMed
  13. S. Taheri, L. Lin, D. Austin, T. Young, and E. Mignot, “Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index,” PLoS Medicine, vol. 1, pp. 210–217, 2004. View at Publisher · View at Google Scholar · View at PubMed
  14. K. Spiegel, R. Leproult, and E. Van Cauter, “Impact of sleep debt on metabolic and endocrine function,” The Lancet, vol. 354, no. 9188, pp. 1435–1439, 1999. View at Publisher · View at Google Scholar
  15. E. Tasali, R. Leproult, D. A. Ehrmann, and E. Van Cauter, “Slow-wave sleep and the risk of type 2 diabetes in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 3, pp. 1044–1049, 2008. View at Publisher · View at Google Scholar · View at PubMed
  16. P. Meerlo, M. Koehl, K. Van der Borght, and F. W. Turek, “Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress,” Journal of Neuroendocrinology, vol. 14, no. 5, pp. 397–402, 2002. View at Publisher · View at Google Scholar
  17. A. Novati, V. Roman, T. Cetin et al., “Chronically restricted sleep leads to depression-like changes in neurotransmitter receptor sensitivity and neuroendocrine stress reactivity in rats,” Sleep, vol. 31, no. 11, pp. 1579–1585, 2008. View at Google Scholar
  18. V. Roman, I. Walstra, P. G. M. Luiten, and P. Meerlo, “Too little sleep gradually desensitizes the serotonin 1A receptor system,” Sleep, vol. 28, no. 12, pp. 1505–1510, 2005. View at Google Scholar
  19. C. A. Everson and A. Szabo, “Recurrent restriction of sleep and inadequate recuperation induce both adaptive changes and pathological outcomes,” American Journal of Physiology, vol. 297, no. 5, pp. R1430–R1440, 2009. View at Publisher · View at Google Scholar · View at PubMed
  20. A. B. Steffens, “A method for frequent sampling of blood and continuous infusion of fluids in the rat without disturbing the animal,” Physiology and Behavior, vol. 4, no. 5, pp. 833–836, 1969. View at Google Scholar
  21. A. J. Scheurink, A. A. Ammar, B. Benthem, G. van Dijk, and P. A. Södersten, “Exercise and the regulation of energy intake,” International Journal of Obesity and Related Metabolic Disorders, vol. 23, supplement 3, pp. S1–S6, 1999. View at Google Scholar
  22. T. Sakurai, “The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness,” Nature Reviews Neuroscience, vol. 8, no. 3, pp. 171–181, 2007. View at Publisher · View at Google Scholar · View at PubMed
  23. N. Tsujino and T. Sakurai, “Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system,” Pharmacological Reviews, vol. 61, no. 2, pp. 162–176, 2009. View at Publisher · View at Google Scholar · View at PubMed
  24. C.-X. Yi, M. J. Serlie, M. T. Ackermans et al., “A major role for perifornical orexin neurons in the control of glucose metabolism in rats,” Diabetes, vol. 58, no. 9, pp. 1998–2005, 2009. View at Publisher · View at Google Scholar · View at PubMed
  25. M. O. L. Galvão, R. Sinigaglia-Coimbra, S. E. Kawakami, S. Tufik, and D. Suchecki, “Paradoxical sleep deprivation activates hypothalamic nuclei that regulate food intake and stress response,” Psychoneuroendocrinology, vol. 34, no. 8, pp. 1176–1183, 2009. View at Publisher · View at Google Scholar · View at PubMed
  26. M. Pedrazzoli, V. D'Almeida, P. J. F. Martins et al., “Increased hypocretin-1 levels in cerebrospinal fluid after REM sleep deprivation,” Brain Research, vol. 995, no. 1, pp. 1–6, 2004. View at Publisher · View at Google Scholar
  27. L. M. Redman and E. Ravussin, “Endocrine alterations in response to calorie restriction in humans,” Molecular and Cellular Endocrinology, vol. 299, no. 1, pp. 129–136, 2009. View at Publisher · View at Google Scholar · View at PubMed
  28. C. A. Everson, “Functional consequences of sustained sleep deprivation in the rat,” Behavioural Brain Research, vol. 69, no. 1-2, pp. 43–54, 1995. View at Publisher · View at Google Scholar
  29. L. B. Borghouts and H. A. Keizer, “Exercise and insulin sensitivity: a review,” International Journal of Sports Medicine, vol. 21, no. 1, pp. 1–12, 2000. View at Publisher · View at Google Scholar
  30. C. M. Donovan and K. D. Sumida, “Training improves glucose homeostasis in rats during exercise via glucose production,” American Journal of Physiology, vol. 258, no. 3, pp. R770–R776, 1990. View at Google Scholar
  31. H. P. R. Bandla and D. Gozal, “Dynamic changes in EEG spectra during obstructive apnea in children,” Pediatric Pulmonology, vol. 29, no. 5, pp. 359–365, 2000. View at Publisher · View at Google Scholar
  32. E. Svanborg and C. Guilleminault, “EEG frequency changes during sleep apneas,” Sleep, vol. 19, no. 3, pp. 248–254, 1996. View at Google Scholar
  33. A. N. Vgontzas, E. O. Bixler, and G. P. Chrousos, “Metabolic disturbances in obesity versus sleep apnoea: the importance of visceral obesity and insulin resistance,” Journal of Internal Medicine, vol. 254, no. 1, pp. 32–44, 2003. View at Publisher · View at Google Scholar
  34. P. E. Peppard, T. Young, M. Palta, J. Dempsey, and J. Skatrud, “Longitudinal study of moderate weight change and sleep-disordered breathing,” Journal of the American Medical Association, vol. 284, no. 23, pp. 3015–3021, 2000. View at Google Scholar
  35. G. Pillar and N. Shehadeh, “Abdominal fat and sleep apnea: the chicken or the egg?” Diabetes care, vol. 31, supplement 2, pp. S303–S309, 2008. View at Google Scholar