Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2012 (2012), Article ID 873723, 6 pages
http://dx.doi.org/10.1155/2012/873723
Review Article

Regulation and Roles of Urocortins in the Vascular System

Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan

Received 8 February 2012; Revised 6 March 2012; Accepted 6 March 2012

Academic Editor: Keiichi Ikeda

Copyright © 2012 Kazunori Kageyama et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Vale, J. Spiess, C. Rivier, and J. Rivier, “Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin,” Science, vol. 213, no. 4514, pp. 1394–1397, 1981. View at Google Scholar · View at Scopus
  2. J. Vauhan, C. Donaldson, J. Bittencourt et al., “Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor,” Nature, vol. 378, no. 6554, pp. 287–292, 1995. View at Google Scholar · View at Scopus
  3. S. Y. Hsu and A. J. W. Hsueh, “Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor,” Nature Medicine, vol. 7, no. 5, pp. 605–611, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Lewis, C. Li, M. H. Perrin et al., “Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 13, pp. 7570–7575, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. T. M. Reyes, K. Lewis, M. H. Perrin et al., “Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2843–2848, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. C. M. Bamberger, M. Wald, A. M. Bamberger, S. Ergün, F. U. Beil, and H. M. Schulte, “Human lymphocytes produce urocortin, but not corticotropin-releasing hormone,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 2, pp. 708–711, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Honjo, N. Inoue, R. Shiraki et al., “Endothelial urocortin has potent antioxidative properties and is upregulated by inflammatory cytokines and pitavastatin,” Journal of Vascular Research, vol. 43, no. 2, pp. 131–138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Kageyama, M. J. Bradbury, L. Zhao, A. L. Blount, and W. W. Vale, “Urocortin messenger ribonucleic acid: tissue distribution in the rat and regulation in thymus by lipopolysaccharide and glucocorticoids,” Endocrinology, vol. 140, no. 12, pp. 5651–5658, 1999. View at Google Scholar · View at Scopus
  9. K. Takahashi, K. Totsune, O. Murakami et al., “Expression of urocortin III/stresscopin in human heart and kidney,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 4, pp. 1897–1903, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Vale, J. Vaughan, and M. Perrin, “Corticotropin-releasing factor (CRF) family of ligands and their receptors,” Endocrinologist, vol. 7, no. 1, pp. 3S–9S, 1997. View at Google Scholar · View at Scopus
  11. C. P. Chang, R. I. Pearse, S. O'Connell, and M. G. Rosenfeld, “Identification of a seven transmembrane helix receptor for corticotropin- releasing factor and sauvagine in mammalian brain,” Neuron, vol. 11, no. 6, pp. 1187–1195, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Chen, K. A. Lewis, M. H. Perrin, and W. W. Vale, “Expression cloning of a human corticotropin-releasing-factor receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 19, pp. 8967–8971, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Vita, P. Laurent, S. Lefort et al., “Primary structure and functional expression of mouse pituitary and human brain corticotrophin releasing factor receptors,” FEBS Letters, vol. 335, no. 1, pp. 1–5, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. T. W. Lovenberg, C. W. Liaw, D. E. Grigoriadis et al., “Cloning and characterization of a functionally distinct corticotropin- releasing factor receptor subtype from rat brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 3, pp. 836–840, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Perrin, C. Donaldson, R. Chen et al., “Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 7, pp. 2969–2973, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Stenzel, R. Kesterson, W. Yeung, R. D. Cone, M. B. Rittenberg, and M. P. Stenzel-Poore, “Identification of a novel murine receptor for corticotropin-releasing hormone expressed in the heart,” Molecular Endocrinology, vol. 9, no. 5, pp. 637–645, 1995. View at Google Scholar · View at Scopus
  17. T. Kishimoto, R. V. Pearse II, C. R. Lin, and M. G. Rosenfeld, “A sauvagine/corticotropin-releasing factor receptor expressed in heart and skeletal muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 4, pp. 1108–1112, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Suda, K. Kageyama, S. Sakihara, and T. Nigawara, “Physiological roles of urocortins, human homologues of fish urotensin I, and their receptors,” Peptides, vol. 25, no. 10, pp. 1689–1701, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Kageyama, C. Li, and W. W. Vale, “Corticotropin-releasing factor receptor type 2 messenger ribonucleic acid in rat pituitary: localization and regulation by immune challenge, restraint stress, and glucocorticoids,” Endocrinology, vol. 144, no. 4, pp. 1524–1532, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. T. W. Lovenberg, D. T. Chalmers, C. Liu, and E. B. De Souza, “CRF(2α) and CRF(2β) receptor mRNAs are differentially distributed between the rat central nervous system and peripheral tissues,” Endocrinology, vol. 136, no. 9, pp. 4139–4142, 1995. View at Google Scholar · View at Scopus
  21. K. Kageyama, K. Hanada, and T. Suda, “Differential regulation of urocortins1-3 mRNA in human umbilical vein endothelial cells,” Regulatory Peptides, vol. 155, no. 1–3, pp. 131–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Kageyama, K. I. Furukawa, I. Miki, K. Terui, S. Motomura, and T. Suda, “Vasodilative effects of urocortin II via protein kinase A and a mitogen-activated protein kinase in rat thoracic aorta,” Journal of Cardiovascular Pharmacology, vol. 42, no. 4, pp. 561–565, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Kageyama, K. Hanada, T. Nigawara et al., “Urocortin induces interleukin-6 gene expression via cyclooxygenase-2 activity in aortic smooth muscle cells,” Endocrinology, vol. 147, no. 9, pp. 4454–4462, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Kageyama, G. E. Gaudriault, M. J. Bradbury, and W. W. Vale, “Regulation of corticotropin-releasing factor receptor type 2β messenger ribonucleic acid in the rat cardiovascular system by urocortin, glucocorticoids, and cytokines,” Endocrinology, vol. 141, no. 7, pp. 2285–2293, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Kageyama, G. E. Gaudriault, T. Suda, and W. W. Vale, “Regulation of corticotropin-releasing factor receptor type 2β mRNA via cyclic AMP pathway in A7r5 aortic smooth muscle cells,” Cellular Signalling, vol. 15, no. 1, pp. 17–25, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Audhya, R. Jain, and C. S. Hollander, “Receptor-mediated immunomodulation by corticotropin-releasing factor,” Cellular Immunology, vol. 134, no. 1, pp. 77–84, 1991. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Kageyama, H. Watanobe, and K. Takebe, “In vivo evidence that arginine vasopressin is involved in the adrenocorticotropin response induced by interleukin-6 but not by tumor necrosis factor-α in the rat,” NeuroImmunoModulation, vol. 2, no. 3, pp. 137–140, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Karalis, L. J. Muglia, D. Bae, H. Hilderbrand, and J. A. Majzoub, “CRH and the immune system,” Journal of Neuroimmunology, vol. 72, no. 2, pp. 131–136, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Kainoh, I. Maruyama, S. Nishio, and T. Nakadate, “Enhancement by beraprost sodium, a stable analogue of prostacyclin, in thrombomodulin expression on membrane surface of cultured vascular endothelial cells via increase in cyclic AMP level,” Biochemical Pharmacology, vol. 41, no. 8, pp. 1135–1140, 1991. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Q. Xu, K. Mahadev, X. Wu et al., “Adiponectin protects against angiotensin II or tumor necrosis factor α-induced endothelial cell monolayer hyperpermeability: role of cAMP/PKA signaling,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 5, pp. 899–905, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Seya, T. Fukuda, K. Isobe, Y. Kawakami, and K. Takekoshi, “Effect of norepinephrine on RhoA, MAP kinase, proliferation and VEGF expression in human umbilical vein endothelial cells,” European Journal of Pharmacology, vol. 553, no. 1–3, pp. 54–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Zhao, C. J. Donaldson, G. W. Smith, and W. W. Vale, “The structures of the mouse and human urocortin genes (Ucn and UCN),” Genomics, vol. 50, no. 1, pp. 23–33, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Lubomirov, H. Gagov, P. Petkova-Kirova, D. Duridanova, V. U. Kalentchuk, and R. Schubert, “Urocortin relaxes rat tail arteries by a PKA-mediated reduction of the sensitivity of the contractile apparatus for calcium,” British Journal of Pharmacology, vol. 134, no. 7, pp. 1564–1570, 2001. View at Google Scholar · View at Scopus
  34. L. Schilling, C. Kanzler, P. Schmiedek, and H. Ehrenreich, “Characterization of the relaxant action of urocortin, a new peptide related to corticotropin-releasing factor in the rat isolated basilar artery,” British Journal of Pharmacology, vol. 125, no. 6, pp. 1164–1171, 1998. View at Google Scholar · View at Scopus
  35. K. Terui, A. Higashiyama, N. Horiba, K. I. Furukawa, S. Motomura, and T. Suda, “Coronary vasodilation and positive inotropism by urocortin in the isolated rat heart,” Journal of Endocrinology, vol. 169, no. 1, pp. 177–183, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Wang, X. Zhu, B. Cong et al., “Estrogenic action on arterial smooth muscle: permissive for maintenance of CRHR2 expression,” Endocrinology, vol. 153, no. 4, pp. 1915–1924, 2012. View at Google Scholar
  37. E. Grossini, C. Molinari, D. A. S. G. Mary et al., “Urocortin II induces nitric oxide production through cAMP and Ca 2+ related pathways in endothelial cells,” Cellular Physiology and Biochemistry, vol. 23, no. 1–3, pp. 87–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Kageyama, S. Sakihara, M. Yamashita et al., “A case of multiple endocrine neoplasia type II accompanied by thyroid medullary carcinoma and pheochromocytomas expressing corticotropin-releasing factor and urocortins,” American Journal of the Medical Sciences, vol. 335, no. 5, pp. 398–402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Dieterle, S. Meili-Butz, K. Bühler et al., “Immediate and sustained blood pressure lowering by urocortin 2 a novel approach to antihypertensive therapy?” Hypertension, vol. 53, no. 4, pp. 739–744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Chen, J. Tao, R. Zhang, Y. Xu, T. Soong, and S. Li, “Urocortin inhibits mesenteric arterial remodeling in spontaneously hypertensive rats,” Peptides, vol. 30, no. 6, pp. 1117–1123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Inada, K. Ikeda, K. Tojo, M. Sakamoto, Y. Takada, and N. Tajima, “Possible involvement of corticotropin-releasing factor receptor signaling on vascular inflammation,” Peptides, vol. 30, no. 2, pp. 365–372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Lydyard and C. Grossi, “The lymphoid system,” in Immunology, I. Roitt, J. Brostoff, and D. Male, Eds., pp. 31–41, Mosby, London, UK, 5th edition, 1998. View at Google Scholar
  43. M. Venihaki, P. Dikkes, A. Carrigan, and K. P. Karalis, “Corticotropin-releasing hormone regulates IL-6 expression during inflammation,” Journal of Clinical Investigation, vol. 108, no. 8, pp. 1159–1166, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Kageyama and T. Suda, “Regulation of corticotropin-releasing factor receptor type 2β messenger ribonucleic acid by interleukin-1β in rat vascular smooth muscle cells,” NeuroImmunoModulation, vol. 9, no. 6, pp. 326–332, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. S. P. Wright, R. N. Doughty, C. M. Frampton, G. D. Gamble, T. G. Yandle, and A. M. Richards, “Plasma urocortin 1 in human heart failure,” Circulation, vol. 2, no. 5, pp. 465–471, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Topal, J. Yagmur, B. Otlu et al., “Relationship of urocortin-2 with systolic and diastolic functions and coronary artery disease: an observational study,” Anadolu Kardiyoloji Dergisi, vol. 12, no. 2, pp. 115–120, 2012. View at Google Scholar
  47. M. T. Rademaker, V. A. Cameron, C. J. Charles, and A. M. Richards, “Integrated hemodynamic, hormonal, and renal actions of urocortin 2 in normal and paced sheep: beneficial effects in heart failure,” Circulation, vol. 112, no. 23, pp. 3624–3632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. M. T. Rademaker, V. A. Cameron, C. J. Charles, and A. M. Richards, “Urocortin 3: haemodynamic, hormonal, and renal effects in experimental heart failure,” European Heart Journal, vol. 27, no. 17, pp. 2088–2098, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. M. T. Rademaker, C. J. Charles, M. G. Nicholls, and A. M. Richards, “Urocortin 2 inhibits furosemide-induced activation of renin and enhances renal function and diuretic responsiveness in experimental heart failure,” Circulation, vol. 2, no. 6, pp. 532–540, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. M. T. Rademaker, C. J. Charles, L. J. Ellmers, L. K. Lewis, M. G. Nicholls, and A. M. Richards, “Prolonged urocortin 2 administration in experimental heart failure: sustained hemodynamic, endocrine, and renal effects,” Hypertension, vol. 57, no. 6, pp. 1136–1144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. C. J. Charles, D. L. Jardine, M. T. Rademaker, and M. Richards, “Urocortin 3 inhibits cardiac sympathetic nerve activity in conscious sheep,” Journal of Cardiovascular Pharmacology, vol. 58, no. 4, pp. 418–423, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Gruson, A. Ginion, N. Decroly et al., “Urocortin-induced cardiomyocytes hypertrophy is associated with regulation of the GSK-3β pathway,” Heart and Vessels, pp. 1–6, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Raddino, C. Pedrinazzi, G. Zanini et al., “Urocortin: molecular biology and cardiovascular effects,” Giornale Italiano di Cardiologia, vol. 8, no. 4, pp. 236–245, 2007. View at Google Scholar · View at Scopus
  54. S. P. Barry, K. M. Lawrence, J. McCormick et al., “New targets of urocortin-mediated cardioprotection,” Journal of Molecular Endocrinology, vol. 45, no. 2, pp. 69–85, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. T. I. Emeto, J. V. Moxon, C. Rush, L. Woodward, and J. Golledge, “Relevance of urocortins to cardiovascular disease,” Journal of Molecular and Cellular Cardiology, vol. 51, no. 3, pp. 299–307, 2011. View at Publisher · View at Google Scholar · View at Scopus