Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013, Article ID 143052, 10 pages
http://dx.doi.org/10.1155/2013/143052
Research Article

Analyzing the Role of Receptor Internalization in the Regulation of Melanin-Concentrating Hormone Signaling

Department of Biology, 217 Lennon Hall, The College at Brockport, State University of New York, 350 New Campus Drive, Brockport, NY 14420, USA

Received 11 July 2013; Accepted 10 October 2013

Academic Editor: Stacia A. Sower

Copyright © 2013 Jay I. Moden et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Kawauchi, I. Kawazoe, and M. Tsubokawa, “Characterization of melaninconcentrating hormone in chum salmon pituitaries,” Nature, vol. 305, no. 5932, pp. 321–323, 1983. View at Google Scholar · View at Scopus
  2. P. Pissios and E. Maratos-Flier, “Melanin-concentrating hormone: from fish skin to skinny mammals,” Trends in Endocrinology and Metabolism, vol. 14, no. 5, pp. 243–248, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Qu, D. S. Ludwig, S. Gammeltoft et al., “A role for melanin-concentrating hormone in the central regulation of feeding behaviour,” Nature, vol. 380, no. 6571, pp. 243–247, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. D. S. Ludwig, N. A. Tritos, J. W. Mastaitis et al., “Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance,” The Journal of Clinical Investigation, vol. 107, no. 3, pp. 379–386, 2001. View at Google Scholar · View at Scopus
  5. M. Shimada, N. A. Tritos, B. B. Lowell, J. S. Flier, and E. Maratos-Flier, “Mice lacking melanin-concentrating hormone are hypophagic and lean,” Nature, vol. 396, no. 6712, pp. 670–674, 1998. View at Google Scholar · View at Scopus
  6. Y. Chen, C. Hu, C. Hsu et al., “Targeted disruption of the melanin-concentrating hormone receptor-1 results in hyperphagia and resistance to diet-induced obesity,” Endocrinology, vol. 143, no. 7, pp. 2469–2477, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. N. F. Berbari, J. S. Lewis, G. A. Bishop, C. C. Askwith, and K. Mykytyn, “Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 11, pp. 4242–4246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Meleco, “AMRI Announces Successful Completion of Phase I Clinical Study of Obesity Compound,” Business Wire, May 2011, http://www.businesswire.com/news/home/20110531005247/en/AMRI-Announces-Successful-Completion-Phase-Clinical-Study.
  9. P. M. C. Lembo, E. Grazzini, J. Cao et al., “The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor,” Nature Cell Biology, vol. 1, no. 5, pp. 267–271, 1999. View at Google Scholar · View at Scopus
  10. N. A. Evans, D. A. Groarke, J. Warrack et al., “Visualizing differences in ligand-induced β-arrestin-GFP interactions and trafficking between three recently characterized G protein-coupled receptors,” Journal of Neurochemistry, vol. 77, no. 2, pp. 476–485, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Saito, M. Tetsuka, Y. Li, H. Kurose, and K. Maruyama, “Properties of rat melanin-concentrating hormone receptor 1 internalization,” Peptides, vol. 25, no. 10, pp. 1597–1604, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. R. L. Bradley, J. P. R. Mansfield, E. Maratos-Flier, and B. Cheatham, “Melanin-concentrating hormone activates signaling pathways in 3T3-L1 adipocytes,” American Journal of Physiology—Endocrinology and Metabolism, vol. 283, no. 3, pp. E584–E592, 2002. View at Google Scholar · View at Scopus
  13. L. B. Cook, E. B. Delorme-Axford, and K. Robinson, “Caveolae as potential mediators of MCH-signaling pathways,” Biochemical and Biophysical Research Communications, vol. 375, no. 4, pp. 592–595, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. B. W. Jones, J. S. Gyun, E. K. Greuber, and P. M. Hinkle, “Phosphorylation of the endogenous thyrotropin-releasing hormone receptor in pituitary GH3 cells and pituitary tissue revealed by phosphosite-specific antibodies,” The Journal of Biological Chemistry, vol. 282, no. 17, pp. 12893–12906, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Murdoch, G. Feng, D. Bächner et al., “Periplakin interferes with G protein activation by the melanin- concentrating hormone receptor-1 by binding to the proximal segment of the receptor C-terminal tail,” The Journal of Biological Chemistry, vol. 280, no. 9, pp. 8208–8220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Pippig, S. Andexinger, K. Daniel et al., “Overexpression of β-arrestin and β-adrenergic receptor kinase augment desensitization of β2-adrenergic receptors,” The Journal of Biological Chemistry, vol. 268, no. 5, pp. 3201–3208, 1993. View at Google Scholar · View at Scopus
  17. R. T. Premont and R. R. Gainetdinov, “Physiological roles of G protein-coupled receptor kinases and arrestins,” Annual Review of Physiology, vol. 69, pp. 511–534, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Evron, T. L. Daigle, and M. G. Caron, “GRK2: multiple roles beyond G protein-coupled receptor desensitization,” Trends in Pharmacological Sciences, vol. 33, no. 3, pp. 154–164, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Kong, R. Penn, and J. L. Benovic, “A β-adrenergic receptor kinase dominant negative mutant attenuates desensitization of the β2-adrenergic receptor,” The Journal of Biological Chemistry, vol. 269, no. 18, pp. 13084–13087, 1994. View at Google Scholar · View at Scopus
  20. J. I. Moden, An Investigation of Melanin-Concentrating Hormone Receptor Internalization—Or a Lack Thereof, The College at Brockport, State University of New York, Brockport, NY, USA, 2012.
  21. Y. He, H. Chen, M. J. Quon, and M. Reitman, “The mouse obese gene. Genomic organization, promoter activity, and activation by CCAAT/enhancer-binding protein α,” The Journal of Biological Chemistry, vol. 270, no. 48, pp. 28887–28891, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Le Roy and J. L. Wrana, “Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling,” Nature Reviews Molecular Cell Biology, vol. 6, no. 2, pp. 112–126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. J. Lohse, S. Andexinger, J. Pitcher et al., “Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of β-arrestin and arrestin in the β2- adrenergic receptor and rhodopsin systems,” The Journal of Biological Chemistry, vol. 267, no. 12, pp. 8558–8564, 1992. View at Google Scholar · View at Scopus
  24. L. Ménard, S. S. G. Ferguson, J. Zhang et al., “Synergistic regulation of β2-adrenergic receptor sequestration: Intracellular complement of β-adrenergic receptor kinase and β-arrestin determine kinetics of internalization,” Molecular Pharmacology, vol. 51, no. 5, pp. 800–808, 1997. View at Google Scholar · View at Scopus
  25. F. Ciruela and R. A. J. McIlhinney, “Differential internalisation of mGluR1 splice variants in response to agonist and phorbol esters in permanently transfected BHK cells,” FEBS Letters, vol. 418, no. 1-2, pp. 83–86, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Veyrat-Durebex, L. Pomerleau, D. Langlois, and P. Gaudreau, “Internalization and trafficking of the human and rat growth hormone-releasing hormone receptor,” Journal of Cellular Physiology, vol. 203, no. 2, pp. 335–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Thathiah, K. Horré, A. Snellinx et al., “β-arrestin 2 regulates Aβ generation and γ-secretase activity in Alzheimer’s disease,” Nature Medicine, vol. 19, no. 1, pp. 43–49, 2012. View at Google Scholar
  28. A. Vroon, C. J. Heijnen, and A. Kavelaars, “GRKs and arrestins: regulators of migration and inflammation,” Journal of Leukocyte Biology, vol. 80, no. 6, pp. 1214–1221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. K. Shenoy and R. J. Lefkowitz, “Multifaceted roles of β-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling,” Biochemical Journal, vol. 375, part 3, pp. 503–515, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Pissios, D. J. Trombly, I. Tzameli, and E. Maratos-Flier, “Melanin-concentrating hormone receptor 1 activates extracellular signal-regulated kinase and synergizes with Gs-coupled pathways,” Endocrinology, vol. 144, no. 8, pp. 3514–3523, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Oh and J. E. Schnitzer, “Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default,” Molecular Biology of the Cell, vol. 12, no. 3, pp. 685–698, 2001. View at Google Scholar · View at Scopus