Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013, Article ID 410348, 10 pages
http://dx.doi.org/10.1155/2013/410348
Research Article

A Two-Pathway Mathematical Model of the LH Response to GnRH that Predicts Self-Priming

1Centre for Neuroendocrinology, University of Otago, Christchurch, New Zealand
2MacDiarmid Institute for Advanced Materials and Nanoengineering, University of Otago, Christchurch, New Zealand
3Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
4Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand
5Department of Mathematics, University of Canterbury, Christchurch, New Zealand

Received 22 August 2013; Accepted 2 October 2013

Academic Editor: Stanko S. Stojilkovic

Copyright © 2013 J. J. Evans et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Tsutsumi and N. J. G. Webster, “GnRH pulsatility, the pituitary response and reproductive dysfunction,” Endocrine Journal, vol. 56, pp. 125–145, 2009. View at Google Scholar
  2. J. J. Evans, F. L. Pragg, and D. R. Mason, “Release of luteinizing hormone from the anterior pituitary gland in vitro can be concurrently regulated by at least three peptides: gonadotropin-releasing hormone, oxytocin and neuropeptide Y,” Neuroendocrinology, vol. 73, no. 6, pp. 408–416, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. R. P. McIntosh and J. E. A. McIntosh, “Dynamic characteristics of luteinizing hormone release from perifused sheep anterior pituitary cells stimulated by combined pulsatile and continuous gonadotropin-releasing hormone,” Endocrinology, vol. 117, no. 1, pp. 169–179, 1985. View at Google Scholar · View at Scopus
  4. J. J. Blum, M. C. Reed, J. A. Janovick, and P. M. Conn, “A mathematical model quantifying GnRH-induced LH secretion from gonadotropes,” American Journal of Physiology: Endocrinology and Metabolism, vol. 278, no. 2, pp. E263–E272, 2000. View at Google Scholar · View at Scopus
  5. K. Heinze, R. W. Keener, and A. R. Midgley Jr., “A mathematical model of luteinizing hormone release from ovine pituitary cells in perifusion,” American Journal of Physiology: Endocrinology and Metabolism, vol. 275, no. 6, pp. E1061–E1071, 1998. View at Google Scholar · View at Scopus
  6. T. M. Washington, J. J. Blum, M. C. Reed, and P. M. Conn, “A mathematical model for LH release in response to continuous and pulsatile exposure of gonadotrophs to GnRH,” Theoretical Biology and Medical Modelling, vol. 24, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. Y.-X. Li and A. Goldbeter, “Frequency specificity in the intercellular communication. Influence of patterns of periodic signaling on target cell responsiveness,” Biophysical Journal, vol. 55, no. 1, pp. 125–145, 1989. View at Google Scholar · View at Scopus
  8. G. Abdilnour and G. A. Bourne, “Adenosine 3,5-cyclic monophosphate and the self-priming effect of gonadotrophin-releasing hormone,” Molecular and Cellular Endocrinology, vol. 107, no. 1, pp. 1–7, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Maya-Núñez and P. M. Conn, “Cyclic adenosine 3,5-monophosphate (cAMP) and cAMP responsive element-binding protein are involved in the transcriptional regulation of gonadotropin-releasing hormone (GnRH) receptor by GnRH and mitogen-activated protein kinase signal transduction pathway in GGH3 cells,” Biology of Reproduction, vol. 65, no. 2, pp. 561–567, 2001. View at Google Scholar · View at Scopus
  10. M. Hagiwara, P. Brindle, A. Harootunian et al., “Coupling of hormonal stimulation and transcription via the cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A,” Molecular and Cellular Biology, vol. 13, no. 8, pp. 4852–4859, 1993. View at Google Scholar · View at Scopus
  11. M. Montminy, “Transcriptional regulation by cyclic AMP,” Annual Review of Biochemistry, vol. 66, pp. 807–822, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Goldbeter, Biochemical Oscillations and Cellular Rhythms, Cambridge University Press, Cambridge, UK, 1996.
  13. S. Scullion, D. Brown, and G. Leng, “Modelling the pituitary response to luteinizing hormone-releasing hormone,” Journal of Neuroendocrinology, vol. 16, no. 3, pp. 265–271, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. D. C. Krakauer, K. M. Page, and S. Sealfon, “Module dynamics of the GnRH signal transduction network,” Journal of Theoretical Biology, vol. 218, no. 4, pp. 457–470, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. D. W. Waring and J. L. Turgeon, “LHRH self priming of gonadotrophin secretion: time course of development,” The American Journal of Physiology, vol. 244, no. 5, pp. C410–C418, 1983. View at Google Scholar · View at Scopus
  16. J. L. Turgeon and D. W. Waring, “Acute progesterone and 17β-estradiol modulation of luteinizing hormone secretion by pituitaries of cycling rats superfused in vitro,” Endocrinology, vol. 108, no. 2, pp. 413–419, 1981. View at Google Scholar · View at Scopus
  17. G. R. Hart, H. Gowing, and J. M. Burrin, “Effects of a novel hypothalamic peptide, pituitary adenylate cyclase-activating polypeptide, on pituitary hormone release in rats,” Journal of Endocrinology, vol. 134, no. 1, pp. 33–41, 1992. View at Google Scholar · View at Scopus
  18. S. Larivière, G. Garrel, M.-T. Robin, R. Counis, and J. Cohen-Tannoudji, “Differential mechanisms for PACAP and GnRH cAMP induction contribute to cross-talk between both hormones in the gonadotrope LβT2 cell line,” Annals of the New York Academy of Sciences, vol. 1070, pp. 376–379, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. P. A. Fowler, T. Sorsa-Leslie, P. Cash et al., “A 60–66 kDa protein with gonadotrophin surge attenuating factor bioactivity is produced by human ovarian granulosa cells,” Molecular Human Reproduction, vol. 8, no. 9, pp. 823–832, 2002. View at Google Scholar · View at Scopus
  20. I. E. Messinis, P. Hirsch, and A. A. Templeton, “Follicle stimulating hormone stimulates the production of gonadotrophin surge attenuating factor (GnSAF) in vivo,” Clinical Endocrinology, vol. 35, no. 5, pp. 403–407, 1991. View at Google Scholar · View at Scopus
  21. P. A. Fowler, P. Cunningham, M. Fraser et al., “Circulating gonadotrophin surge-attenuating factor from superovulated women suppresses in vitro gonadotrophin-releasing hormone self-priming,” Journal of Endocrinology, vol. 143, no. 1, pp. 45–54, 1994. View at Google Scholar · View at Scopus
  22. I. E. Messinis, S. Milingos, K. Zikopoulos, G. Hasiotis, K. Seferiadis, and D. Lolis, “Luteinizing hormone response to gonadotrophin-releasing hormone in normal women undergoing ovulation induction with urinary or recombinant follicle stimulating hormone,” Human Reproduction, vol. 13, no. 9, pp. 2415–2420, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Martinez, P. N. Barri, B. Coroleu et al., “Women with poor response to IVF have lowered circulating gonadotrophin surge-attenuating factor (GnSAF) bioactivity during spontaneous and stimulated cycles,” Human Reproduction, vol. 17, no. 3, pp. 634–640, 2002. View at Google Scholar · View at Scopus
  24. S. J. Winters and J. P. Moore Jr., “PACAP, an autocrine/paracrine regulator of gonadotrophs,” Biology of Reproduction, vol. 84, no. 5, pp. 844–850, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. J. Evans, “Modulation of gonadotropin levels by peptides acting at the anterior pituitary gland,” Endocrine Reviews, vol. 20, no. 1, pp. 46–67, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. D. M. F. Cooper, N. Mons, and J. W. Karpen, “Adenylyl cyclases and the interaction between calcium and cAMP signalling,” Nature, vol. 374, no. 6521, pp. 421–424, 1995. View at Google Scholar · View at Scopus
  27. P. E. Rapp and M. J. Berridge, “Oscillations in calcium cyclic AMP control loops from the basis of pacemaker activity and other high frequency biological rhythms,” Journal of Theoretical Biology, vol. 66, no. 3, pp. 497–525, 1977. View at Google Scholar · View at Scopus
  28. N. Mons, L. Decorte, R. Jaffard, and D. M. F. Cooper, “Ca2+-sensitive adenylyl cyclases, key integrators of cellular signalling,” Life Sciences, vol. 62, no. 17-18, pp. 1647–1652, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. V. Gorbunova and N. C. Spitzer, “Dynamic interactions of cyclic AMP transients and spontaneous Ca2+ spikes,” Nature, vol. 418, no. 6893, pp. 93–96, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. M. B. Macrae, J. S. Davidson, R. P. Millar, and P. A. Van der Merwe, “Cyclic AMP stimulates luteinizing-hormone (lutropin) exocytosis in permeabilized sheep anterior-pituitary cells. Synergism with protein kinase C and calcium,” Biochemical Journal, vol. 271, no. 3, pp. 635–639, 1990. View at Google Scholar · View at Scopus
  31. C. N. Jayasena, G. M. K. Nijher, A. Abbara et al., “Twice-weekly administration of kisspeptin-54 for 8 weeks stimulates release of reproductive hormones in women with hypothalamic amenorrhea,” Clinical Pharmacology and Therapeutics, vol. 88, no. 6, pp. 840–847, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Humaidan, S. Kol, and E. G. Papanikolaou, “GnRH agonist for triggering of final oocyte maturation: time for a change of practice?” Human Reproduction Update, vol. 17, no. 4, pp. 510–524, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. P. M. Conn, D. V. Morrell, M. L. Dufau, and K. J. Catt, “Gonadotropin-releasing hormone action in cultured pituicytes: independence of luteinizing hormone release and adenosine 3,5-monophosphate production,” Endocrinology, vol. 104, no. 2, pp. 448–453, 1979. View at Google Scholar · View at Scopus
  34. Z. Naor, Y. Koch, P. Chobsieng, and U. Zor, “Pituitary cyclic AMP production and mechanism of luteinizing hormone release,” FEBS Letters, vol. 58, no. 1, pp. 318–321, 1975. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Théoleyre, A. Bérault, J. Garnier, and M. Jutisz, “Binding of gonadotropin-releasing hormone (LH-RH) to the pituitary plasma membranes and the problem of adenylate cyclase stimulation,” Molecular and Cellular Endocrinology, vol. 5, no. 5, pp. 365–377, 1976. View at Google Scholar · View at Scopus
  36. R. N. Clayton, R. A. Shakespear, and J. C. Marshall, “LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation,” Molecular and Cellular Endocrinology, vol. 11, no. 1, pp. 63–78, 1978. View at Google Scholar · View at Scopus
  37. K. K. Sen and K. M. J. Menon, “Dissociation of cyclic AMP accumulation from that of luteinizing hormone (LH) release in response to gonadotropin releasing hormone (GnRH) and cholera enterotoxin,” Biochemical and Biophysical Research Communications, vol. 87, no. 1, pp. 221–228, 1979. View at Google Scholar · View at Scopus
  38. R. N. Clayton, “Gonadotrophin-releasing hormone: its actions and receptors,” Journal of Endocrinology, vol. 120, no. 1, pp. 11–19, 1989. View at Google Scholar · View at Scopus
  39. H. Nakano, C. P. Fawcett, F. Kimura, and S. M. McCann, “Evidence for the involvement of guanosine 3,5-cyclic monophosphate in the regulation of gonadotropin release,” Endocrinology, vol. 103, no. 5, pp. 1527–1533, 1978. View at Google Scholar · View at Scopus
  40. T. Kaneko, S. Saito, H. Oka, T. Oda, and N. Yanaihara, “Effects of synthetic LH-RH and its analogs on rat anterior pituitary cyclic AMP and LH and FSH release,” Metabolism, vol. 22, no. 1, pp. 77–80, 1973. View at Google Scholar · View at Scopus
  41. J. L. Turgeon and D. W. Waring, “Comparison between K+-induced and LHRH-induced gonadotropin secretion in vitro,” American Journal of Physiology: Endocrinology and Metabolism, vol. 7, no. 2, pp. E170–E176, 1983. View at Google Scholar · View at Scopus
  42. A. J. M. C. Pickering and G. Fink, “Priming effect of luteinizing hormone releasing factor in vitro: role of protein synthesis, contractile elements, Ca2+ and cyclic AMP,” Journal of Endocrinology, vol. 81, no. 3, pp. 223–234, 1979. View at Google Scholar · View at Scopus
  43. J. L. Turgeon and D. W. Waring, “cAMP augmentation of secretagogue-induced luteinizing hormone secretion,” American Journal of Physiology: Endocrinology and Metabolism, vol. 250, pp. E62–E68, 1986. View at Google Scholar · View at Scopus
  44. G. A. Bourne, “Cyclic AMP indirectly mediates the extracellular Ca2+-independent release of LH,” Molecular and Cellular Endocrinology, vol. 58, no. 2-3, pp. 155–160, 1988. View at Google Scholar · View at Scopus
  45. G. A. Bourne and D. M. Baldwin, “Evidence for cAMP as a mediator of gonadotropin secretion from female pituitaries,” American Journal of Physiology: Endocrinology and Metabolism, vol. 253, no. 3, pp. E290–E295, 1987. View at Google Scholar · View at Scopus