Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013 (2013), Article ID 674105, 12 pages
http://dx.doi.org/10.1155/2013/674105
Review Article

Anti-Müllerian Hormone: A Valuable Addition to the Toolbox of the Pediatric Endocrinologist

1INSERM U782, Université Paris-Sud, UMR-S0782, 92140 Clamart, France
2Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños “R. Gutiérrez”, C1425EFD Buenos Aires, Argentina
3Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina

Received 31 May 2013; Accepted 7 October 2013

Academic Editor: Volker Ziller

Copyright © 2013 Nathalie Josso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. B. Pepinsky, L. K. Sinclair, E. P. Chow et al., “Proteolytic processing of Müllerian inhibiting substance produces a transforming growth factor-β-like fragment,” Journal of Biological Chemistry, vol. 263, no. 35, pp. 18961–18964, 1988. View at Google Scholar · View at Scopus
  2. N. di Clemente, S. P. Jamin, A. Lugovskoy et al., “Processing of anti-Müllerian hormone regulates receptor activation by a mechanism distinct from TGF-β,” Molecular Endocrinology, vol. 24, no. 11, pp. 2193–2206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Vigier, J. Y. Picard, and D. Tran, “Production of anti-Müllerian hormone: another homology between Sertoli and granulosa cells,” Endocrinology, vol. 114, no. 4, pp. 1315–1320, 1984. View at Google Scholar · View at Scopus
  4. R. Rey, J.-C. Sabourin, M. Venara et al., “Anti-Müllerian hormone is a specific marker of sertoli- and granulosa-cell origin in gonadal tumors,” Human Pathology, vol. 31, no. 10, pp. 1202–1208, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. R. P. Grinspon and R. A. Rey, “Anti-Müllerian hormone and sertoli cell function in paediatric male hypogonadism,” Hormone Research in Paediatrics, vol. 73, no. 2, pp. 81–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Bergadá, C. Milani, P. Bedecarrás et al., “Time course of the serum gonadotropin surge, inhibins, and anti-Müllerian hormone in normal newborn males during the first month of life,” Journal of Clinical Endocrinology & Metabolism, vol. 91, no. 10, pp. 4092–4098, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Aksglaede, K. Sørensen, M. Boas et al., “Changes in Anti-Müllerian Hormone (AMH) throughout the life span: a population-based study of 1027 healthy males from birth (cord blood) to the age of 69 years,” Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 12, pp. 5357–5364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Josso, R. Rey, and J. Y. Picard, “Testicular anti-Müllerian hormone: clinical applications in DSD,” Seminars in Reproductive Medicine, vol. 30, no. 05, pp. 364–373, 2012. View at Publisher · View at Google Scholar
  9. C. Lasala, D. Carré-Eusèbe, J.-Y. Picard, and R. Rey, “Subcellular and molecular mechanisms regulating anti-Müllerian hormone gene expression in mammalian and nonmammalian species,” DNA and Cell Biology, vol. 23, no. 9, pp. 572–585, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Lukas-Croisier, C. Lasala, J. Nicaud et al., “Follicle-stimulating hormone increases testicular Anti-Müllerian Hormone (AMH) production through Sertoli cell proliferation and a nonclassical cyclic adenosine 5′-monophosphate-mediated activation of the AMH gene,” Molecular Endocrinology, vol. 17, no. 4, pp. 550–561, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. R. A. Rey, M. Venara, R. Coutant et al., “Unexpected mosaicism of R201H-GNAS1 mutant-bearing cells in the testes underlie macro-orchidism without sexual precocity in McCune-Albright syndrome,” Human Molecular Genetics, vol. 15, no. 24, pp. 3538–3543, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Lasala, H. F. Schteingart, N. Arouche et al., “SOX9 and SF1 are involved in cyclic AMP-mediated upregulationof anti-Müllerian gene expression in the testicular prepubertal Sertoli cell line SMAT1,” American Journal of Physiology: Endocrinology and Metabolism, vol. 301, no. 3, pp. E539–E547, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Rey, “Endocrine, paracrine and cellular regulation of postnatal anti-Müllerian hormone secretion by Sertoli cells,” Trends in Endocrinology and Metabolism, vol. 9, no. 7, pp. 271–276, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. R. A. Rey, M. Musse, M. Venara, and H. E. Chemes, “Ontogeny of the androgen receptor expression in the fetal and postnatal testis: its relevance on sertoli cell maturation and the onset of adult spermatogenesis,” Microscopy Research and Technique, vol. 72, no. 11, pp. 787–795, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. E. B. Berensztein, M. S. Baquedano, C. R. Gonzalez et al., “Expression of aromatase, estrogen receptor α and β, androgen receptor, and cytochrome P-450scc in the human early prepubertal testis,” Pediatric Research, vol. 60, no. 6, pp. 740–744, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. H. E. Chemes, R. A. Rey, M. Nistal et al., “Physiological androgen insensitivity of the fetal, neonatal, and early infantile testis is explained by the ontogeny of the androgen receptor expression in Sertoli cells,” Journal of Clinical Endocrinology & Metabolism, vol. 93, no. 11, pp. 4408–4412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Boukari, G. Meduri, S. Brailly-Tabard et al., “Lack of androgen receptor expression in Sertoli cells accounts for the absence of anti-Müllerian hormone repression during early human testis development,” Journal of Clinical Endocrinology & Metabolism, vol. 94, no. 5, pp. 1818–1825, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Rey, “Assessment of seminiferous tubule function (anti-Müllerian hormone),” Best Practice and Research, vol. 14, no. 3, pp. 399–408, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. M. M. Lee, M. Misra, P. K. Donahoe, and D. T. MacLaughlin, “MIS/AMH in the assessment of cryptorchidism and intersex conditions,” Molecular and Cellular Endocrinology, vol. 211, no. 1-2, pp. 91–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. M. M. Lee, P. K. Donahoe, B. L. Silverman et al., “Measurements of serum Müllerian inhibiting substance in the evaluation of children with nonpalpable gonads,” The New England Journal of Medicine, vol. 336, no. 21, pp. 1480–1486, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Josso, “Paediatric applications of anti-Müllerian hormone research. 1992 Andrea Prader Lecture,” Hormone Research, vol. 43, no. 6, pp. 243–248, 1995. View at Google Scholar · View at Scopus
  22. R. P. Grinspon, P. Bedecarrás, M. G. Ballerini et al., “Early onset of primary hypogonadism revealed by serum anti-Müllerian hormone determination during infancy and childhood in trisomy 21,” International Journal of Andrology, vol. 34, no. 5, pp. e487–e498, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Young, R. Rey, B. Couzinet, P. Chanson, N. Josso, and G. Schaison, “Antimüllerian hormone in patients with hypogonadotropic hypogonadism,” Journal of Clinical Endocrinology & Metabolism, vol. 84, no. 8, pp. 2696–2699, 1999. View at Google Scholar · View at Scopus
  24. J. Young, P. Chanson, S. Salenave et al., “Testicular anti-Müllerian hormone secretion is stimulated by recombinant human FSH in patients with congenital hypogonadotropic hypogonadism,” Journal of Clinical Endocrinology & Metabolism, vol. 90, no. 2, pp. 724–728, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. M. G. Bastida, R. A. Rey, I. Bergadá et al., “Establishment of testicular endocrine function impairment during childhood and puberty in boys with Klinefelter syndrome,” Clinical Endocrinology, vol. 67, no. 6, pp. 863–870, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. H. J. Hirsch, T. Eldar-Geva, F. Benarroch, O. Rubinstein, and V. Gross-Tsur, “Primary testicular dysfunction is a major contributor to abnormal pubertal development in males with Prader-Willi syndrome,” Journal of Clinical Endocrinology & Metabolism, vol. 94, no. 7, pp. 2262–2268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. F. Radicioni, G. di Giorgio, G. Grugni et al., “Multiple forms of hypogonadism of central, peripheral or combined origin in males with Prader-Willi syndrome,” Clinical Endocrinology, vol. 76, no. 1, pp. 72–77, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. E. P. C. Siemensma, R. F. A. de Lind van Wijngaarden, B. J. Otten, F. H. de Jong, and A. C. S. Hokken-Koelega, “Testicular failure in boys with Prader-Willi syndrome: longitudinal studies of reproductive hormones,” Journal of Clinical Endocrinology & Metabolism, vol. 97, no. 3, pp. E452–E459, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. U. Eiholzer, D. l'Allemand, V. Rousson et al., “Hypothalamic and gonadal components of hypogonadism in boys with Prader-Labhart-Willi syndrome,” Journal of Clinical Endocrinology & Metabolism, vol. 91, no. 3, pp. 892–898, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Bergadá, L. Andreone, P. Bedecarrás et al., “Seminiferous tubule function in delayed-onset X-linked adrenal hypoplasia congenita associated with incomplete hypogonadotrophic hypogonadism,” Clinical Endocrinology, vol. 68, no. 2, pp. 240–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Ferlin, D. Zuccarello, B. Zuccarello, M. R. Chirico, G. F. Zanon, and C. Foresta, “Genetic alterations associated with cryptorchidism,” Journal of the American Medical Association, vol. 300, no. 19, pp. 2271–2276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. H. E. Virtanen and J. Toppari, “Epidemiology and pathogenesis of cryptorchidism,” Human Reproduction Update, vol. 14, no. 1, pp. 49–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Misra, D. T. MacLaughlin, P. K. Donahoe, M. M. Lee, and M. Massachusetts, “Measurement of Müllerian inhibiting substance facilitates management of boys with microphallus and cryptorchidism,” Journal of Clinical Endocrinology & Metabolism, vol. 87, no. 8, pp. 3598–3602, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. A.-M. Suomi, K. M. Main, M. Kaleva et al., “Hormonal changes in 3-month-old cryptorchid boys,” Journal of Clinical Endocrinology & Metabolism, vol. 91, no. 3, pp. 953–958, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Bay, H. E. Virtanen, S. Hartung et al., “Insulin-like factor 3 levels in cord blood and serum from children: effects of age, postnatal hypothalamic-pituitary-gonadal axis activation, and cryptorchidism,” Journal of Clinical Endocrinology & Metabolism, vol. 92, no. 10, pp. 4020–4027, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Kollin, J. B. Stukenborg, M. Nurmio et al., “Boys with undescended testes: endocrine, volumetric and morphometric studies on testicular function before and after orchidopexy at nine months or three years of age,” Journal of Clinical Endocrinology & Metabolism, vol. 97, pp. 4588–4595, 2012. View at Google Scholar
  37. R. P. Grinspon, M. G. Ropelato, P. Bedecarrás et al., “Gonadotrophin secretion pattern in anorchid boys from birth to pubertal age: pathophysiological aspects and diagnostic usefulness,” Clinical Endocrinology, vol. 76, no. 5, pp. 698–705, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Ankarberg-Lindgren, O. Westphal, and J. Dahlgren, “Testicular size development and reproductive hormones in boys and adult males with Noonan syndrome: a longitudinal study,” European Journal of Endocrinology, vol. 165, no. 1, pp. 137–144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Feyaerts, M. G. Forest, Y. Morel et al., “Endocrine screening in 32 consecutive patients with hypospadias,” Journal of Urology, vol. 168, no. 2, pp. 720–725, 2002. View at Google Scholar · View at Scopus
  40. R. A. Rey, E. Codner, G. Iñíguez et al., “Low risk of impaired testicular sertoli and leydig cell functions in boys with isolated hypospadias,” Journal of Clinical Endocrinology & Metabolism, vol. 90, no. 11, pp. 6035–6040, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. R. A. Rey, C. Belville, C. Nihoul-Fékété et al., “Evaluation of gonadal function in 107 intersex patients by means of serum antimüllerian hormone measurement,” Journal of Clinical Endocrinology & Metabolism, vol. 84, pp. 627–631, 1999. View at Google Scholar
  42. I. Plotton, C. L. Gay, A. M. Bertrand et al., “AMH determination is essential for the management of 46, XY DSD patients,” Pediatric Research, vol. 72, supplement 3, p. 365, 2009. View at Google Scholar
  43. C. P. Hagen, L. Aksglaede, K. Sørensen et al., “Serum levels of anti-Müllerian hormone as a marker of ovarian function in 926 healthy females from birth to adulthood and in 172 turner syndrome patients,” Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 11, pp. 5003–5010, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Rey, F. Mebarki, M. G. Forest et al., “Anti-Müllerian hormone in children with androgen insensitivity,” Journal of Clinical Endocrinology & Metabolism, vol. 79, no. 4, pp. 960–964, 1994. View at Publisher · View at Google Scholar · View at Scopus
  45. E. G. Stuchi-Perez, C. Hackel, L. E. C. Oliveira et al., “Diagnosis of 5α-reductase type 2 deficiency: contribution of anti-Müllerian hormone evaluation,” Journal of Pediatric Endocrinology and Metabolism, vol. 18, no. 12, pp. 1383–1389, 2005. View at Google Scholar · View at Scopus
  46. C. Bouvattier, J.-C. Carel, C. Lecointre et al., “Postnatal changes of T, LH, and FSH in 46,XY infants with mutations in the AR gene,” Journal of Clinical Endocrinology & Metabolism, vol. 87, no. 1, pp. 29–32, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Lang-Muritano, A. Biason-Lauber, C. Gitzelmann, C. Belville, Y. Picard, and E. J. Schoenle, “A novel mutation in the anti-Müllerian hormone gene as cause of persistent Müllerian duct syndrome,” European Journal of Pediatrics, vol. 160, no. 11, pp. 652–654, 2001. View at Google Scholar · View at Scopus
  48. M. A. El-Gohary, “Laparoscopic management of persistent Müllerian duct syndrome,” Pediatric Surgery International, vol. 19, no. 7, pp. 533–536, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. E. L. Martin, A. H. Bennett, and W. J. Cromie, “Persistent Müllerian duct syndrome with transverse testicular ectopia and spermatogenesis,” Journal of Urology, vol. 147, no. 6, pp. 1615–1617, 1992. View at Google Scholar · View at Scopus
  50. S. Naouar, K. Maazoun, L. Sahnoun et al., “Transverse testicular ectopia: a three-case report and review of the literature,” Urology, vol. 71, no. 6, pp. 1070–1073, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Abduljabbar, K. Taheini, J. Y. Picard et al., “Mutations of the AMH type II receptor in two extended families with persistent Müllerian duct syndrome: lack of phenotype/genotype correlation,” Hormone Research in Paediatrics, vol. 77, pp. 291–297, 2012. View at Publisher · View at Google Scholar
  52. W. Chaabane, L. Jarboui, A. Sahnoun et al., “Persistent Müllerian duct syndrome with torsion of a transverse testicular ectopia: first reported case,” Urology, vol. 76, no. 1, pp. 65–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Imbeaud, R. Rey, P. Berta et al., “Testicular degeneration in three patients with the persistent Müllerian duct syndrome,” European Journal of Pediatrics, vol. 154, no. 3, pp. 187–190, 1995. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Josso, C. Fekete, and O. Cachin, “Persistence of Müllerian ducts in male pseudohermaphroditism, and its relationship to cryptorchidism,” Clinical Endocrinology, vol. 19, no. 2, pp. 247–258, 1983. View at Google Scholar · View at Scopus
  55. D. R. Vandersteen, A. K. Chaumeton, K. Ireland, and E. S. Tank, “Surgical management of persistent Müllerian duct syndrome,” Urology, vol. 49, no. 6, pp. 941–945, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. D. W. Brandli, C. Akbal, E. Eugsster, N. Hadad, R. J. Havlik, and M. Kaefer, “Persistent Müllerian duct syndrome with bilateral abdominal testis: surgical approach and review of the literature,” Journal of Pediatric Urology, vol. 1, no. 6, pp. 423–427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Josso, C. Belville, N. di Clemente, and J.-Y. Picard, “AMH and AMH receptor defects in persistent Müllerian duct syndrome,” Human Reproduction Update, vol. 11, no. 4, pp. 351–356, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Belville, H. van Vlijmen, C. Ehrenfels et al., “Mutations of the anti-Müllerian hormone gene in patients with persistent Müllerian duct syndrome: biosynthesis, secretion, and processing of the abnormal proteins and analysis using a three-dimensional model,” Molecular Endocrinology, vol. 18, no. 3, pp. 708–721, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. R. L. Cate, R. J. Mattaliano, and C. Hession, “Isolation of the bovine and human genes for Müllerian inhibiting substance and expression of the human gene in animal cells,” Cell, vol. 45, no. 5, pp. 685–698, 1986. View at Google Scholar · View at Scopus
  60. O. Cohen-Haguenauer, J. Y. Picard, and M.-G. Mattei, “Mapping of the gene for anti-Müllerian hormone to the short arm of human chromosome 19,” Cytogenetics and Cell Genetics, vol. 44, no. 1, pp. 2–6, 1987. View at Google Scholar · View at Scopus
  61. B. Knebelmann, L. Boussin, D. Guerrier et al., “Anti-Müllerian hormone bruxelles: a nonsense mutation associated with the persistent Müllerian duct syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 9, pp. 3767–3771, 1991. View at Google Scholar · View at Scopus
  62. W. M. Baarends, M. J. L. van Helmond, M. Post et al., “A novel member of the transmembrane serine/threonine kinase receptor family is specifically expressed in the gonads and in mesenchymal cells adjacent to the Müllerian duct,” Development, vol. 120, no. 1, pp. 189–197, 1994. View at Google Scholar · View at Scopus
  63. N. di Clemente, C. Wilson, E. Faure et al., “Cloning, expression, and alternative splicing of the receptor for anti-Müllerian hormone,” Molecular Endocrinology, vol. 8, no. 8, pp. 1006–1020, 1994. View at Publisher · View at Google Scholar · View at Scopus
  64. T. R. Clarke, Y. Hoshiya, S. E. Yi, X. Liu, K. M. Lyons, and P. K. Donahoe, “Müllerian inhibiting substance signaling uses a Bone Morphogenetic Protein (BMP)-like pathway mediated by ALK2 and induces Smad6 expression,” Molecular Endocrinology, vol. 15, no. 6, pp. 946–959, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. G. D. Orvis, S. P. Jamin, K. M. Kwan et al., “Functional redundancy of TGF-beta family type i receptors and receptor-smads in mediating anti-Müllerian hormone-induced Müllerian duct regression in the mouse,” Biology of Reproduction, vol. 78, no. 6, pp. 994–1001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. S. P. Jamin, N. A. Arango, Y. Mishina, M. C. Hanks, and R. R. Behringer, “Requirement of Bmpr1a for Müllerian duct regression during male sexual development,” Nature Genetics, vol. 32, no. 3, pp. 408–410, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Gouédard, Y.-G. Chen, L. Thevenet et al., “Engagement of bone morphogenetic protein type IB receptor and Smad1 signaling by anti-Müllerian hormone and its type II receptor,” Journal of Biological Chemistry, vol. 275, no. 36, pp. 27973–27978, 2000. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Belville, S. P. Jamin, J.-Y. Picard, N. Josso, and N. di Clemente, “Role of type I receptors for anti-Müllerian hormone in the SMAT-1 Sertoli cell line,” Oncogene, vol. 24, no. 31, pp. 4984–4992, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Imbeaud, E. Faure, I. Lamarre et al., “Insensitivity to anti-Müllerian hormone due to a mutation in the human anti-Müllerian hormone receptor,” Nature Genetics, vol. 11, no. 4, pp. 382–388, 1995. View at Google Scholar · View at Scopus
  70. M. Hoshiya, B. P. Christian, W. J. Cromie et al., “Persistent Müllerian duct syndrome caused by both a 27-bp deletion and a novel splice mutation in the MIS type II receptor gene,” Birth Defects Research A, vol. 67, no. 10, pp. 868–874, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Klosowski, A. Abriak, C. Morisot et al., “Jejunal atresia and persistent Müllerian duct syndrome,” Archives de Pediatrie, vol. 4, no. 12, pp. 1264–1265, 1997. View at Google Scholar · View at Scopus
  72. N. Josso and N. di Clemente, “Transduction pathway of anti-Müllerian hormone, a sex-specific member of the TGF-β family,” Trends in Endocrinology and Metabolism, vol. 14, no. 2, pp. 91–97, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Kobayashi, C. Allison Stewart, Y. Wang et al., “β-catenin is essential for Müllerian duct regression during male sexual differentiation,” Development, vol. 138, no. 10, pp. 1967–1975, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. P. S. Tanwar, L. Zhang, Y. Tanaka, M. M. Taketo, P. K. Donahoe, and J. M. Teixeira, “Focal Müllerian duct retention in male mice with constitutively activated β-catenin expression in the Müllerian duct mesenchyme,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 37, pp. 16142–16147, 2010. View at Publisher · View at Google Scholar · View at Scopus