Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013, Article ID 801743, 28 pages
http://dx.doi.org/10.1155/2013/801743
Review Article

The Effects of Exercise Training on Obesity-Induced Dysregulated Expression of Adipokines in White Adipose Tissue

1Department of Molecular Predictive Medicine and Sport Science, Kyorin University, School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
2Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan
3Department of Nursing, Kyorin University, Faculty of Health Science, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
4Department of Respiratory Medicine, Hachioji Medical Center, Tokyo Medical University, 1163 Tatemachi, Hachioji, Tokyo 193-0998, Japan
5Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
6Third Department of Internal Medicine, Kyorin University, School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
7Department of Sports Biochemistry, Faculty of Health and Sport Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan

Received 6 July 2013; Revised 7 October 2013; Accepted 10 October 2013

Academic Editor: Eun Seok Kang

Copyright © 2013 Takuya Sakurai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Obesity is recognized as a risk factor for lifestyle-related diseases such as type 2 diabetes and cardiovascular disease. White adipose tissue (WAT) is not only a static storage site for energy; it is also a dynamic tissue that is actively involved in metabolic reactions and produces humoral factors, such as leptin and adiponectin, which are collectively referred to as adipokines. Additionally, because there is much evidence that obesity-induced inflammatory changes in WAT, which is caused by dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein 1, contribute to the development of insulin resistance, WAT has attracted special attention as an organ that causes diabetes and other lifestyle-related diseases. Exercise training (TR) not only leads to a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the inflammation-related adipokines in WAT. Therefore, TR is widely used as a tool for preventing and improving lifestyle-related diseases. This review outlines the impact of TR on the expression and secretory response of adipokines in WAT.