Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013 (2013), Article ID 865965, 12 pages
http://dx.doi.org/10.1155/2013/865965
Review Article

Obesity-Related Metabolic Syndrome: Mechanisms of Sympathetic Overactivity

1Division of Hypertension and Nephrology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
2Division of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy

Received 26 July 2013; Accepted 10 September 2013

Academic Editor: Manfredi Tesauro

Copyright © 2013 Maria Paola Canale et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Grundy, H. B. Brewer Jr., J. I. Cleeman, S. C. Smith Jr., and C. Lenfant, “Definition of Metabolic Syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition,” Circulation, vol. 109, no. 3, pp. 433–438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. “Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Final report,” Circulation, vol. 106, pp. 3143–3421, 2002.
  3. K. G. M. M. Alberti, R. H. Eckel, S. M. Grundy et al., “Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity,” Circulation, vol. 120, no. 16, pp. 1640–1645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. M. Grundy, “Metabolic syndrome pandemic,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 4, pp. 629–636, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. Alexander, P. B. Landsman, S. M. Teutsch, and S. M. Haffner, “NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older,” Diabetes, vol. 52, no. 5, pp. 1210–1214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Cameron, J. E. Shaw, and P. Z. Zimmet, “The metabolic syndrome: prevalence in worldwide populations,” Endocrinology and Metabolism Clinics of North America, vol. 33, no. 2, pp. 351–375, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. E. S. Ford, W. H. Giles, and A. H. Mokdad, “Increasing prevalence of the metabolic syndrome among U.S. adults,” Diabetes Care, vol. 27, no. 10, pp. 2444–2449, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. R. H. Eckel, S. M. Grundy, and P. Z. Zimmet, “The metabolic syndrome,” The Lancet, vol. 365, no. 9468, pp. 1415–1428, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Isomaa, P. Almgren, T. Tuomi et al., “Cardiovascular morbidity and mortality associated with the metabolic syndrome,” Diabetes Care, vol. 24, no. 4, pp. 683–689, 2001. View at Google Scholar · View at Scopus
  10. H.-M. Lakka, D. E. Laaksonen, T. A. Lakka et al., “The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men,” The Journal of the American Medical Association, vol. 288, no. 21, pp. 2709–2716, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Poirier, T. D. Giles, G. A. Bray et al., “Obesity and cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on obesity and heart disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism,” Circulation, vol. 113, no. 6, pp. 898–918, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Tesauro, M. P. Canale, G. Rodia et al., “Metabolic syndrome, chronic kidney, and cardiovascular diseases: role of adipokines,” Cardiology Research and Practice, vol. 2011, Article ID 653182, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. E. P. Kirk and S. Klein, “Pathogenesis and pathophysiology of the cardiometabolic syndrome,” Journal of Clinical Hypertension, vol. 11, no. 12, pp. 761–765, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. G. M. Reaven, “Role of insulin resistance in human disease,” Diabetes, vol. 37, no. 12, pp. 1595–1607, 1988. View at Google Scholar · View at Scopus
  15. J. E. Hall, A. A. da Silva, J. M. do Carmo et al., “Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins,” The Journal of Biological Chemistry, vol. 285, no. 23, pp. 17271–17276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Chaudhary, J. P. Buddineni, R. Nistala, and A. Whaley-Connell, “Resistant hypertension in the high-risk metabolic patient,” Current Diabetes Reports, vol. 11, no. 1, pp. 41–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Mancia, P. Bousquet, J. L. Elghozi et al., “The sympathetic nervous system and the metabolic syndrome,” Journal of Hypertension, vol. 25, no. 5, pp. 909–920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. G. M. Reaven, “Pathophysiology of insulin resistance in human disease,” Physiological Reviews, vol. 75, no. 3, pp. 473–486, 1995. View at Google Scholar · View at Scopus
  19. K. Shirai, “Obesity as the core of the metabolic syndrome and the management of coronary heart disease,” Current Medical Research and Opinion, vol. 20, no. 3, pp. 295–304, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. J.-P. Després, I. Lemieux, J. Bergeron et al., “Abdominal Obesity and the Metabolic Syndrome: contribution to global cardiometabolic risk,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 6, pp. 1039–1049, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. L. K. Phillips and J. B. Prins, “The link between abdominal obesity and the metabolic syndrome,” Current Hypertension Reports, vol. 10, no. 2, pp. 156–164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. R. Sowers and E. D. Frohlich, “Insulin and insulin resistance: impact on blood pressure and cardiovascular disease,” Medical Clinics of North America, vol. 88, no. 1, pp. 63–82, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Bays, N. Abate, and M. Chandalia, “Adiposopathy: sick fat causes high blood sugar, high blood pressure and dyslipidaemia,” Future Cardiology, vol. 1, pp. 39–59, 2005. View at Google Scholar
  24. K. G. Alberti, P. Zimmet, J. Shaw, and IDF Epidemiology Task Force Consensus Group, “The metabolic syndrome—a new worldwide definition,” The Lancet, vol. 366, no. 9491, pp. 1059–1062, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Grassi, “Role of the sympathetic nervous system in human hypertension,” Journal of Hypertension, vol. 16, no. 12, pp. 1979–1987, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Amerena and S. Julius, “The role of the autonomic nervous system in hypertension,” Hypertension Research, vol. 18, no. 2, pp. 99–110, 1995. View at Google Scholar · View at Scopus
  27. G. Grassi, “Sympathetic overdrive and cardiovascular risk in the metabolic syndrome,” Hypertension Research, vol. 29, no. 11, pp. 839–847, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. G. E. Alvarez, T. P. Ballard, S. D. Beske, and K. P. Davy, “Subcutaneous obesity is not associated with sympathetic neural activation,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 287, no. 1, pp. H414–H418, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. M. Smith and C. T. Minson, “Obesity and adipokines: effects on sympathetic overactivity,” Journal of Physiology, vol. 590, no. 8, pp. 1787–1801, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Z. Kalil and W. G. Haynes, “Sympathetic nervous system in obesity-related hypertension: mechanisms and clinical implications,” Hypertension Research, vol. 35, no. 1, pp. 4–16, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Vaz, G. Jennings, A. Turner, H. Cox, G. Lambert, and M. Esler, “Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects,” Circulation, vol. 96, no. 10, pp. 3423–3429, 1997. View at Google Scholar · View at Scopus
  32. G. Grassi, R. Dell'Oro, A. Facchini, F. Q. Trevano, G. B. Bolla, and G. Mancia, “Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives,” Journal of Hypertension, vol. 22, no. 12, pp. 2363–2369, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. N. E. Straznicky, E. A. Lambert, G. W. Lambert, K. Masuo, M. D. Esler, and P. J. Nestel, “Effects of dietary weight loss on sympathetic activity and cardiac risk factors associated with the metabolic syndrome,” The Journal of Clinical Endocrinology & Metabolism, vol. 90, no. 11, pp. 5998–6005, 2005. View at Google Scholar
  34. L. Landsberg, “Diet, obesity and hypertension: an hypothesis involving insulin, the sympathetic nervous system, and adaptive thermogenesis,” Quarterly Journal of Medicine, vol. 61, no. 236, pp. 1081–1090, 1986. View at Google Scholar · View at Scopus
  35. S. Julius, M. Valentini, and P. Palatini, “Overweight and hypertension: a 2-way street?” Hypertension, vol. 35, no. 3, pp. 807–813, 2000. View at Google Scholar · View at Scopus
  36. S. M. Grundy, “What is the contribution of obesity to the metabolic syndrome?” Endocrinology and Metabolism Clinics of North America, vol. 33, pp. 267–282, 2004. View at Google Scholar
  37. G. W. Lambert, N. E. Straznicky, E. A. Lambert, J. B. Dixon, and M. P. Schlaich, “Sympathetic nervous activation in obesity and the metabolic syndrome-Causes, consequences and therapeutic implications,” Pharmacology and Therapeutics, vol. 126, no. 2, pp. 159–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. B. M. Y. Cheung and C. Li, “Diabetes and hypertension: is there a common metabolic pathway?” Current Atherosclerosis Reports, vol. 14, pp. 160–166, 2012. View at Google Scholar
  39. P. Deedwania, “Hypertension, dyslipidemia, and insulin resistance in patients with diabetes mellitus or the cardiometabolic syndrome: benefits of vasodilating beta-blockers,” Journal of Clinical Hypertension, vol. 13, no. 1, pp. 52–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Duvnjak and M. Duvnjak, “The metabolic syndrome—an ongoing story,” Journal of Physiology and Pharmacology, vol. 60, pp. 19–24, 2009. View at Google Scholar · View at Scopus
  41. G. M. Reaven, “Insulin resistance, compensatory hyperinsulinemia, and coronary heart disease: syndrome X revisited,” in Handbook of Physiology, L. S. Jefferson and A. D. Cherrington, Eds., vol. 2 of The Endocrine Pancreas and Regulation of Metabolism, section 7, pp. 1169–1197, Oxford University Press, New York, NY, USA, 2001. View at Google Scholar
  42. G. M. Reaven, “Insulin resistance and its consequences,” in Diabetes Mellitus: A Fundamental and Clinical Text, D. LeRoith, S. I. Taylor, and J. M. Olefasky, Eds., pp. 899–915, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2004. View at Google Scholar
  43. P. J. Flakoll, M. D. Jensen, and A. D. Cherrington, “Physiological action of insulin,” in Diabetes Mellitus: A Fundamental and Clinical Text, D. LeRoith, S. I. Taylor, and J. M. Olefasky, Eds., pp. 165–181, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2004. View at Google Scholar
  44. C. C. L. Wang, M. L. Goalstone, and B. Draznin, “Molecular mechanisms of insulin resistance that impact cardiovascular biology,” Diabetes, vol. 53, no. 11, pp. 2735–2740, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. C. S. Stump, S. E. Clark, and J. R. Sowers, “Oxidative stress in insulin-resistant conditions: cardiovascular implications,” Treatments in Endocrinology, vol. 4, no. 6, pp. 343–351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. M. S. Muntzel, D. A. Morgan, A. L. Mark, and A. K. Johnson, “Intracerebroventricular insulin produces nonuniform regional increases in sympathetic nerve activity,” American Journal of Physiology, Regulatory—Integrative and Comparative Physiology, vol. 267, no. 5, pp. R1350–R1355, 1994. View at Google Scholar · View at Scopus
  47. K. Rahmouni, D. A. Morgan, G. M. Morgan et al., “Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin,” The Journal of Clinical Investigation, vol. 114, no. 5, pp. 652–658, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. P. A. Cassaglia, S. M. Hermes, S. A. Aicher, and V. L. Brooks, “Insulin acts in the arcuate nucleus to increase lumbar sympathetic nerve activity and baroreflex function in rats,” Journal of Physiology, vol. 589, no. 7, pp. 1643–1662, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. D. F. Hopkins and G. Williams, “Insulin receptors are widely distributed in human brain and bind human and porcine insulin with equal affinity,” Diabetic Medicine, vol. 14, pp. 1044–1050, 1997. View at Google Scholar
  50. P. Ciofi, “The arcuate nucleus as a circumventricular organ in the mouse,” Neuroscience Letters, vol. 487, no. 2, pp. 187–190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. R. A. L. Dampney, “Arcuate nucleus—a gateway for insulin's action on sympathetic activity,” Journal of Physiology, vol. 589, no. 9, pp. 2109–2110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. E. A. Anderson, R. P. Hoffman, T. W. Balon, C. A. Sinkey, and A. L. Mark, “Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans,” The Journal of Clinical Investigation, vol. 87, no. 6, pp. 2246–2252, 1991. View at Google Scholar · View at Scopus
  53. L. Landsberg, “Obesity and the insulin resistance syndrome,” Hypertension Research, vol. 19, no. 1, pp. S51–S55, 1996. View at Google Scholar · View at Scopus
  54. J. Fagius and C. Berne, “Increase in muscle nerve sympathetic activity in humans after food intake,” Clinical Science, vol. 86, no. 2, pp. 159–167, 1994. View at Google Scholar · View at Scopus
  55. H. S. Cox, D. M. Kaye, J. M. Thompson et al., “Regional sympathetic nervous activation after a large meal in humans,” Clinical Science, vol. 89, no. 2, pp. 145–154, 1995. View at Google Scholar · View at Scopus
  56. C. N. Young, S. H. Deo, K. Chaudhary, J. P. Thyfault, and P. J. Fadel, “Insulin enhances the gain of arterial baroreflex control of muscle sympathetic nerve activity in humans,” Journal of Physiology, vol. 588, no. 18, pp. 3593–3603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Berne, J. Fagius, T. Pollare, and P. Hjemdahl, “The sympathetic response to euglycaemic hyperinsulinaemia. Evidence from microelectrode nerve recordings in healthy subjects,” Diabetologia, vol. 35, no. 9, pp. 873–879, 1992. View at Google Scholar · View at Scopus
  58. P. Vollenweider, L. Tappy, D. Randin et al., “Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans,” The Journal of Clinical Investigation, vol. 92, no. 1, pp. 147–154, 1993. View at Google Scholar · View at Scopus
  59. M. Hausberg, A. L. Mark, R. P. Hoffman, C. A. Sinkey, and E. A. Anderson, “Dissociation of sympathoexcitatory and vasodilator actions of modestly elevated plasma insulin levels,” Journal of Hypertension, vol. 13, no. 9, pp. 1015–1021, 1995. View at Publisher · View at Google Scholar · View at Scopus
  60. P. Van De Borne, M. Hausberg, R. P. Hoffman, A. L. Mark, and E. A. Anderson, “Hyperinsulinemia produces cardiac vagal withdrawal and nonuniform sympathetic activation in normal subjects,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 276, no. 1, pp. R178–R183, 1999. View at Google Scholar · View at Scopus
  61. N. E. Straznicky, M. T. Grima, N. Eikelis et al., “The effects of weight loss versus weight loss maintenance on sympathetic nervous system activity and metabolic syndrome components,” The Journal of Clinical Endocrinology & Metabolism, vol. 96, no. 3, pp. E503–E508, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. N. E. Straznicky, M. T. Grima, C. I. Sari et al., “Neuroadrenergic dysfunction along the diabetes continuum: a comparative study in obese metabolic syndrome subjects,” Diabetes, vol. 61, no. 10, pp. 2506–2516, 2012. View at Google Scholar
  63. T. Kishi, Y. Hirooka, K. Ogawa, S. Konno, and K. Sunagawa, “Calorie restriction inhibits sympathetic nerve activity via anti-oxidant effect in the rostral ventrolateral medulla of obesity-induced hypertensive rats,” Clinical and Experimental Hypertension, vol. 33, no. 4, pp. 240–245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Lambert, N. E. Straznicky, T. Dawood et al., “Change in sympathetic nerve firing pattern associated with dietary weight loss in the metabolic syndrome,” Frontiers in Physiology, vol. 2, article 52, 2011. View at Publisher · View at Google Scholar
  65. C. M. Licht, E. J. de Geus, and B. W. Penninx, “Dysregulation of the autonomic nervous system predicts the developement of the metabolic syndrome,” The Journal of Clinical Endocrinology & Metabolism, vol. 98, no. 6, pp. 2484–2493, 2013. View at Google Scholar
  66. P. Vollenweider, D. Randin, L. Tappy, E. Jéquier, P. Nicod, and U. Scherrer, “Impaired insulin-induced sympathetic neural activation and vasodilation in skeletal muscle in obese humans,” The Journal of Clinical Investigation, vol. 93, no. 6, pp. 2365–2371, 1994. View at Google Scholar · View at Scopus
  67. N. E. Straznicky, G. W. Lambert, K. Masuo et al., “Blunted sympathetic neural response to oral glucose in obese subjects with the insulin-resistant metabolic syndrome,” American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 27–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. H. K. Vincent and A. G. Taylor, “Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans,” International Journal of Obesity, vol. 30, no. 3, pp. 400–418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. A. D. Dobrian, M. J. Davies, S. D. Schriver, T. J. Lauterio, and R. L. Prewitt, “Oxidative stress in a rat model of obesity-induced hypertension,” Hypertension, vol. 37, no. 2, pp. 554–560, 2001. View at Google Scholar · View at Scopus
  70. T. Ogihara, T. Asano, K. Ando et al., “Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling,” Hypertension, vol. 40, no. 6, pp. 872–879, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. M. C. Blendea, D. Jacobs, C. S. Stump et al., “Abrogation of oxidative stress improves insulin sensitivity in the Ren-2 rat model of tissue angiotensin II overexpression,” American Journal of Physiology—Endocrinology and Metabolism, vol. 288, no. 2, pp. E353–E359, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Matsuzawa-Nagata, T. Takamura, H. Ando et al., “Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity,” Metabolism, vol. 57, no. 8, pp. 1071–1077, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. E. M. Yubero-Serrano, J. Delgado-Lista, P. Peña-Orihuela et al., “Oxidative stress is associated with the number of components of metabolic syndrome: LIPGENE study,” Experimental & Molecular Medicine, vol. 45, article e28, 2013. View at Publisher · View at Google Scholar
  74. K. Fujita, H. Nishizawa, T. Funahashi, I. Shimomura, and M. Shimabukuro, “Systemic oxidative stress is associated with visceral fat accumulation and the metabolic syndrome,” Circulation Journal, vol. 70, no. 11, pp. 1437–1442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. J. P. Despres, “Health consequences of visceral adiposity,” Annals of Internal Medicine, vol. 33, pp. 534–541, 2001. View at Google Scholar
  76. B. L. Wajchenberg, “Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome,” Endocrine Reviews, vol. 21, no. 6, pp. 697–738, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. S. M. Haffner, “Abdominal adiposity and cardiometabolic risk: do we have all the answer?” American Journal of Medicine, vol. 120, no. 9, supplement 1, pp. S10–S16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. K. E. Wellen and G. S. Hotamisligil, “Obesity-induced inflammatory changes in adipose tissue,” The Journal of Clinical Investigation, vol. 112, no. 12, pp. 1785–1788, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. J. G. Neels and J. M. Olefsky, “Inflamed fat: what starts the fire?” The Journal of Clinical Investigation, vol. 116, no. 1, pp. 33–35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. P. Trayhurn and I. S. Wood, “Adipokines: inflammation and the pleiotropic role of white adipose tissue,” British Journal of Nutrition, vol. 92, no. 3, pp. 347–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. J. R. Sowers and E. D. Frohlich, “Insulin and insulin resistance: impact on blood pressure and cardiovascular disease,” Medical Clinics of North America, vol. 88, no. 1, pp. 63–82, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Rahmouni, M. L. G. Correia, W. G. Haynes, and A. L. Mark, “Obesity-associated hypertension: new insights into mechanisms,” Hypertension, vol. 45, no. 1, pp. 9–14, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Schinzari, M. Tesauro, V. Rovella et al., “Generalized impairment of vasodilator reactivity during hyperinsulinemia in patients with obesity-related metabolic syndrome,” American Journal of Physiology—Endocrinology and Metabolism, vol. 299, no. 6, pp. E947–E952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Tesauro and C. Cardillo, “Obesity, blood vessels and metabolic syndrome,” Acta Physiologica, vol. 203, no. 1, pp. 279–286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. U. Campia, M. Tesauro, and C. Cardillo, “Human obesity and endothelium-dependent responsiveness,” British Journal of Pharmacology, vol. 165, no. 3, pp. 561–573, 2012. View at Publisher · View at Google Scholar · View at Scopus
  86. F. Schinzari, M. Tesauro, V. Rovella et al., “Rho-kinase inhibition improves vasodilator responsiveness during hyperinsulinemia in the metabolic syndrome,” American Journal of Physiology—Endocrinology and Metabolism, vol. 303, no. 6, pp. 806–811, 2012. View at Publisher · View at Google Scholar
  87. V. Mohamed-Ali, J. H. Pinkney, and S. W. Coppack, “Adipose tissue as an endocrine and paracrine organ,” International Journal of Obesity, vol. 22, no. 12, pp. 1145–1158, 1998. View at Google Scholar · View at Scopus
  88. G. R. Hajer, T. W. van Haeften, and F. L. J. Visseren, “Adipose tissue dysfunction in obesity, diabetes, and vascular diseases,” European Heart Journal, vol. 29, no. 24, pp. 2959–2971, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. N. Maenhaut and J. Van de Voorde, “Regulation of vascular tone by adipocytes,” BMC Medicine, vol. 9, article 25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Mapfei, J. Halaas, E. Ravussin et al., “Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects,” Nature Medicine, vol. 1, no. 11, pp. 1155–1161, 1995. View at Google Scholar · View at Scopus
  91. R. V. Considine, M. K. Sinha, M. L. Heiman et al., “Serum immunoreactive-leptin concentrations in normal-weight and obese humans,” The New England Journal of Medicine, vol. 334, pp. 292–295, 1996. View at Publisher · View at Google Scholar
  92. Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman, “Positional cloning of the mouse obese gene and its human homologue,” Nature, vol. 372, pp. 425–432, 1994. View at Google Scholar
  93. S. E. Simonds, M. A. Cowley, and P. J. Enriori, “Leptin increasing sympathetic nerve outflow in obesity. A cure for obesity or a potential contributor to metabolic syndrome?” Adipocyte, vol. 1, no. 3, pp. 177–181, 2012. View at Google Scholar
  94. D. Spanswick, M. A. Smith, V. E. Groppi, S. D. Logan, and M. L. J. Ashford, “Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels,” Nature, vol. 390, no. 6659, pp. 521–525, 1997. View at Publisher · View at Google Scholar · View at Scopus
  95. M. A. Cowley, J. L. Smart, M. Rubinstein et al., “Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus,” Nature, vol. 411, no. 6836, pp. 480–484, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. P. J. Enriori, A. E. Evans, P. Sinnayah et al., “Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons,” Cell Metabolism, vol. 5, no. 3, pp. 181–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. H. Münzberg, J. S. Flier, and C. Bjørbæk, “Region-specific leptin resistance within the hypothalamus of diet-induced obese mice,” Endocrinology, vol. 145, no. 11, pp. 4880–4889, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. L. Landsberg and J. B. Young, “Fasting, feeding and regulation of the sympathetic nervous system,” The New England Journal of Medicine, vol. 298, no. 23, pp. 1295–1301, 1978. View at Google Scholar · View at Scopus
  99. U. Scherrer, D. Randin, L. Tappy, P. Vollenweider, E. Jéquier, and P. Nicod, “Body fat and sympathetic nerve activity in healthy subjects,” Circulation, vol. 89, no. 6, pp. 2634–2640, 1994. View at Google Scholar · View at Scopus
  100. F. Galletti, L. D'Elia, G. Barba et al., “High-circulating leptin levels are associated with greater risk of hypertension in men independently of body mass and insulin resistance: results of an eight-year follow-up study,” The Journal of Clinical Endocrinology & Metabolism, vol. 93, no. 10, pp. 3922–3926, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. N. Eikelis, M. Schlaich, A. Aggarwal, D. Kaye, and M. Esler, “Interactions between leptin and the human sympathetic nervous system,” Hypertension, vol. 41, no. 5, pp. 1072–1079, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. E. Lambert, C. I. Sari, T. Dawood et al., “Sympathetic nervous system activity is associated with obesity-induced subclinical organ damage in young adults,” Hypertension, vol. 56, no. 3, pp. 351–358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. A. J. Marsh, M. A. P. Fontes, S. Killinger, D. B. Pawlak, J. W. Polson, and R. A. L. Dampney, “Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus,” Hypertension, vol. 42, no. 4, pp. 488–493, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. J. Ciriello, “Leptin in nucleus of the solitary tract alters the cardiovascular responses to aortic baroreceptor activation,” Peptides, vol. 44, pp. 1–7, 2013. View at Publisher · View at Google Scholar
  105. B. Li, Z. Shi, P. A. Cassaglia, and V. L. Brooks, “Leptin acts in the forebrain to differentially influence baroreflex control of lumbar, renal, and splanchnic sympathetic nerve activity and heart rate,” Hypertension, vol. 61, no. 4, pp. 812–819, 2013. View at Publisher · View at Google Scholar
  106. A. A. da Silva, J. M. do Carmo, and J. E. Hall, “Role of leptin and central nervous system melanocortins in obesity hypertension,” Current Opinion in Nephrology and Hypertension, vol. 22, no. 2, pp. 135–140, 2013. View at Google Scholar
  107. T. B. Curry, M. Somaraju, C. N. Hines et al., “Sympathetic support of energy expenditure and sympathetic nervous system activity after gastric bypass surgery,” Obesity, vol. 21, no. 3, pp. 480–485, 2013. View at Google Scholar
  108. G. Frühbeck, “Pivotal role of nitric oxide in the control of blood pressure after leptin administration,” Diabetes, vol. 48, no. 4, pp. 903–908, 1999. View at Google Scholar · View at Scopus
  109. G. Lembo, C. Vecchione, L. Fratta et al., “Leptin induces direct vasodilation through distinct endothelial mechanisms,” Diabetes, vol. 49, no. 2, pp. 293–297, 2000. View at Google Scholar · View at Scopus
  110. C. Vecchione, A. Maffei, S. Colella et al., “Leptin effect on endothelial nitric oxide is mediated through Akt-endothelial nitric oxide synthase phosphorylation pathway,” Diabetes, vol. 51, no. 1, pp. 168–173, 2002. View at Google Scholar · View at Scopus
  111. K. Matsuda, H. Teragawa, Y. Fukuda, K. Nakagawa, Y. Higashi, and K. Chayama, “Leptin causes nitric-oxide independent coronary artery vasolidation in humans,” Hypertension Research, vol. 26, no. 2, pp. 147–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. F. Schinzari, M. Tesauro, V. Rovella et al., “Leptin stimulates both endothelin-1 and nitric oxide activity in lean subjects but not in patients with obesity-related metabolic syndrome,” The Journal of Clinical Endocrinology & Metabolism, vol. 98, no. 3, pp. 1235–1241, 2013. View at Google Scholar
  113. R. Bruce, I. Godsland, C. Walton, D. Crook, and V. Wynn, “Associations between insulin sensitivity, and free fatty acid and triglyceride metabolism independent of uncomplicated obesity,” Metabolism, vol. 43, no. 10, pp. 1275–1281, 1994. View at Publisher · View at Google Scholar · View at Scopus
  114. G. Perseghin, S. Ghosh, K. Gerow, and G. I. Shulman, “Metabolic defects in lean nondiabetic offspring of NIDDM parents: a cross-sectional study,” Diabetes, vol. 46, no. 6, pp. 1001–1009, 1997. View at Google Scholar · View at Scopus
  115. Y. T. Kruszynska, D. S. Worrall, J. Ofrecio, J. P. Frias, G. Macaraeg, and J. M. Olefsky, “Fatty acid-induced insulin resistance: decreased muscle PI3K activation but unchanged Akt phosphorylation,” The Journal of Clinical Endocrinology & Metabolism, vol. 87, no. 1, pp. 226–234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. J. R. Zierath, K. L. Houseknecht, L. Gnudi, and B. B. Kahn, “High-fat feeding impairs insulin-stimulated GLUT4 recruitment via an early insulin-signaling defect,” Diabetes, vol. 46, no. 2, pp. 215–223, 1997. View at Google Scholar · View at Scopus
  117. M. E. Griffin, M. J. Marcucci, G. W. Cline et al., “Free fatty acid-induced insulin resistance is associated with activation of protein kinase C θ and alterations in the insulin signaling cascade,” Diabetes, vol. 48, no. 6, pp. 1270–1274, 1999. View at Publisher · View at Google Scholar · View at Scopus
  118. T. K. T. Lam, G. J. Schwartz, and L. Rossetti, “Hypothalamic sensing of fatty acids,” Nature Neuroscience, vol. 8, no. 5, pp. 579–584, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. J. P. Florian and J. A. Pawelczyk, “Non-esterified fatty acids increase arterial pressure via central sympathetic activation in humans,” Clinical Science, vol. 118, no. 1, pp. 61–69, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. C. A. Gadegbeku, A. Dhandayuthapani, Z. E. Sadler, and B. M. Egan, “Raising lipids acutely reduces baroreflex sensitivity,” American Journal of Hypertension, vol. 15, no. 6, pp. 479–485, 2002. View at Publisher · View at Google Scholar · View at Scopus
  121. H. P. Kohler and P. J. Grant, “Plasminogen-activator inhibitor type 1 and coronary artery disease,” The New England Journal of Medicine, vol. 342, no. 24, pp. 1792–1801, 2000. View at Publisher · View at Google Scholar · View at Scopus
  122. K. D. Monahan, D. J. Dyckman, and C. A. Ray, “Effect of acute hyperlipidemia on autonomic and cardiovascular control in humans,” Journal of Applied Physiology, vol. 103, no. 1, pp. 162–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. R. J. Grekin, C.-O. Ngarmukos, D. M. Williams, and M. A. Supiano, “Renal norepinephrine spillover during infusion of nonesterified fatty acids,” American Journal of Hypertension, vol. 18, no. 3, pp. 422–426, 2005. View at Publisher · View at Google Scholar · View at Scopus
  124. E. Hu, P. Liang, and B. M. Spiegelman, “AdipoQ is a novel adipose-specific gene dysregulated in obesity,” The Journal of Biological Chemistry, vol. 271, no. 18, pp. 10697–10703, 1996. View at Publisher · View at Google Scholar · View at Scopus
  125. K. Maeda, K. Okubo, I. Shimomura, T. Funahashi, Y. Matsuzawa, and K. Matsubara, “cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (adipose most abundant gene transcript 1),” Biochemical and Biophysical Research Communications, vol. 221, no. 2, pp. 286–289, 1996. View at Publisher · View at Google Scholar · View at Scopus
  126. P. E. Scherer, S. Williams, M. Fogliano, G. Baldini, and H. F. Lodish, “A novel serum protein similar to C1q, produced exclusively in adipocytes,” The Journal of Biological Chemistry, vol. 270, no. 45, pp. 26746–26749, 1995. View at Publisher · View at Google Scholar · View at Scopus
  127. Z. Guo, Z. Xia, V. G. Yuen, and J. H. McNeill, “Cardiac expression of adiponectin and its receptors in streptozotocin-induced diabetic rats,” Metabolism, vol. 56, no. 10, pp. 1363–1371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. C. Hug, J. Wang, N. S. Ahmad, J. S. Bogan, T.-S. Tsao, and H. F. Lodish, “T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 28, pp. 10308–10313, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. S. S. Cohen, M. D. Gammon, K. E. North et al., “ADIPOQ, ADIPOR1, and ADIPOR2 polymorphisms in relation to serum adiponectin levels and BMI in black and white women,” Obesity, vol. 19, no. 10, pp. 2053–2062, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Haluzik, J. Parizkova, and M. M. Haluzik, “Adiponectin and its role in the obesity-induced insulin resistance and related complications,” Physiological Research, vol. 53, pp. 123–129, 2004. View at Google Scholar
  131. B. Salani, L. Briatore, G. Andraghetti, G. F. Adami, D. Maggi, and R. Cordera, “High-molecular weight adiponectin isoforms increase after biliopancreatic diversion in obese subjects,” Obesity, vol. 14, no. 9, pp. 1511–1514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  132. J. L. Trevaskis, B. Gawronska-Kozak, G. M. Sutton et al., “Role of adiponectin and inflammation in insulin resistance of Mc3r and Mc4r knockout mice,” Obesity, vol. 15, no. 11, pp. 2664–2672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. K. Ohashi, S. Kihara, N. Ouchi et al., “Adiponectin replenishment ameliorates obesity-related hypertension,” Hypertension, vol. 47, no. 6, pp. 1108–1116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. C. Antoniades, A. S. Antonopoulos, D. Tousoulis, and C. Stefanadis, “Adiponectin: from obesity to cardiovascular disease: etiology and Pathophysiology,” Obesity Reviews, vol. 10, no. 3, pp. 269–279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. M. Tesauro, F. Schinzari, M. Caramanti, R. Lauro, and C. Cardillo, “Metabolic and cardiovascular effects of ghrelin,” International Journal of Peptides, vol. 2010, Article ID 864342, 2010. View at Publisher · View at Google Scholar
  136. L. Pulkkinen, O. Ukkola, M. Kolehmainen, and M. Uusitupa, “Ghrelin in diabetes and metabolic syndrome,” International Journal of Peptides, vol. 2010, Article ID 248948, 11 pages, 2010. View at Publisher · View at Google Scholar
  137. M. Tschop, D. L. Smiley, and M. L. Heiman, “Ghrelin induces adiposity in rodents,” Nature, vol. 407, no. 6806, pp. 908–913, 2000. View at Publisher · View at Google Scholar · View at Scopus
  138. M. Tschöp, C. Weyer, P. A. Tataranni, V. Devanarayan, E. Ravussin, and M. L. Heiman, “Circulating ghrelin levels are decreased in human obesity,” Diabetes, vol. 50, no. 4, pp. 707–709, 2001. View at Google Scholar · View at Scopus
  139. C. Langenberg, J. Bergstrom, G. A. Laughlin, and E. Barrett-Connor, “Ghrelin and the metabolic syndrome in older adults,” The Journal of Clinical Endocrinology & Metabolism, vol. 90, no. 12, pp. 6448–6453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. E. Lambert, G. Lambert, C. Ika-Sari et al., “Ghrelin modulates sympathetic nervous system activity and stress response in lean and overweight men,” Hypertension, vol. 58, no. 1, pp. 43–50, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. J. N. Freeman, J. M. do Carmo, A. H. Adi, and A. A. da Silva, “Chronic central ghrelin infusion reduces blood pressure and heart rate despite increasing appetite and promoting weight gain in normotensive and hypertensive rats,” Peptides, vol. 42, pp. 35–42, 2013. View at Publisher · View at Google Scholar
  142. M. Tesauro, F. Schinzari, M. Iantorno et al., “Ghrelin improves endothelial function in patients with metabolic syndrome,” Circulation, vol. 112, no. 19, pp. 2986–2992, 2005. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Iantorno, H. Chen, J.-A. Kim et al., “Ghrelin has novel vascular actions that mimic PI 3-kinase-dependent actions of insulin to stimulate production of NO from endothelial cells,” American Journal of Physiology—Endocrinology and Metabolism, vol. 292, no. 3, pp. E756–E764, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. M. Tesauro, F. Schinzari, V. Rovella et al., “Ghrelin restores the endothelin 1/nitric oxide balance in patients with obesity-related metabolic syndrome,” Hypertension, vol. 54, no. 5, pp. 995–1000, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. G. F. Dibona and U. C. Kopp, “Neural control of renal function,” Physiological Reviews, vol. 77, no. 1, pp. 75–197, 1997. View at Google Scholar · View at Scopus
  146. P. A. Sobotka, F. Mahfoud, M. P. Schlaich, U. C. Hoppe, M. Böhm, and H. Krum, “Sympatho-renal axis in chronic disease,” Clinical Research in Cardiology, vol. 100, no. 12, pp. 1049–1057, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. M. P. Schlaich, D. Hering, P. Sobotka et al., “Effects of renal denervation on sympathetic activation, blood pressure, and glucose metabolism in patients with resistant hypertension,” Frontiers in Physiology, vol. 3, article 10, 2012. View at Google Scholar
  148. T. Mabin, M. Sapoval, V. Cabane, J. Stemmett, and M. Iyer, “First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension,” EuroIntervention, vol. 8, pp. 57–61, 2012. View at Google Scholar
  149. M. P. Schlaich, N. Straznicky, M. Grima et al., “Renal denervation: a potential new treatment modality for polycystic ovary syndrome?” Journal of Hypertension, vol. 29, no. 5, pp. 991–996, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. M. P. Horl and W. H. Horl, “Hemodialysis-associated hypertension: pathophysiology and therapy,” American Journal of Kidney Diseases, vol. 39, no. 2, pp. 227–244, 2002. View at Google Scholar · View at Scopus
  151. D. Rubinger, R. Backenroth, and D. Sapoznikov, “Sympathetic nervous system function and dysfunction in chronic hemodialysis patients,” Seminars in Dialysis, vol. 26, pp. 333–343, 2013. View at Google Scholar
  152. N. Di Daniele, M. De Francesco, L. Violo, A. Spinelli, and G. Simonetti, “Renal sympathetic nerve ablation for the treatment of difficult-to-control or refractory hypertension in a haemodialysis patient,” Nephrology Dialysis Transplantation, vol. 27, no. 4, pp. 1689–1690, 2012. View at Publisher · View at Google Scholar · View at Scopus
  153. C. Ott, A. Schmid, T. Ditting et al., “Renal denervation in a hypertensive patient with end-stage renal disease and small arteries: a direction for future research,” Journal of Clinical Hypertension, vol. 14, pp. 799–801, 2012. View at Google Scholar
  154. M. P. Schlaich, B. Bart, D. Hering et al., “Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with end-stage renal disease,” International Journal of Cardiology, 2013. View at Publisher · View at Google Scholar