Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2014, Article ID 323407, 6 pages
http://dx.doi.org/10.1155/2014/323407
Research Article

Increased Circulating Betatrophin Concentrations in Patients with Type 2 Diabetes

1Department of Medical Cell Biology, Uppsala University, Husargatan 3, P.O. Box 571, 75123 Uppsala, Sweden
2Department of Medical Sciences, Uppsala University Hospital, Uppsala University, 75185 Uppsala, Sweden
3Department of Public Health Care, Uppsala University, Husargatan 3, P.O. Box 564, 75122 Uppsala, Sweden

Received 2 April 2014; Accepted 7 May 2014; Published 22 May 2014

Academic Editor: Matthew Watt

Copyright © 2014 Daniel Espes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Yi, J. S. Park, and D. A. Melton, “Betatrophin: a hormone that controls pancreatic β cell proliferation,” Cell, vol. 153, no. 4, pp. 747–758, 2013. View at Publisher · View at Google Scholar
  2. Y. Saisho, A. E. Butler, E. Manesso, D. Elashoff, R. A. Rizza, and P. C. Butler, “β-cell mass and turnover in humans: effects of obesity and aging,” Diabetes Care, vol. 36, no. 1, pp. 111–117, 2013. View at Google Scholar
  3. Y. Jiao, J. Le Lay, M. Yu, A. Naji, and K. H. Kaestner, “Elevated mouse hepatic betatrophin expression does not increase human β-cell replication in the transplant setting,” Diabetes, vol. 63, no. 4, pp. 1283–1288, 2013. View at Publisher · View at Google Scholar
  4. S. Gargani, J. Thevenet, J. E. Yuan et al., “Adaptive changes of human islets to an obesogenic environment in the mouse,” Diabetologia, vol. 56, no. 2, pp. 350–358, 2013. View at Publisher · View at Google Scholar
  5. B. Tyrberg, J. Ustinov, T. Otonkoski, and A. Andersson, “Stimulated endocrine cell proliferation and differentiation in transplanted human pancreatic islets: effects of the ob gene and compensatory growth of the implantation organ,” Diabetes, vol. 50, no. 2, pp. 301–307, 2001. View at Google Scholar · View at Scopus
  6. A. E. Butler, J. Janson, S. Bonner-Weir, R. Ritzel, R. A. Rizza, and P. C. Butler, “β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes,” Diabetes, vol. 52, no. 1, pp. 102–110, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Rahier, Y. Guiot, R. M. Goebbels, C. Sempoux, and J. C. Henquin, “Pancreatic β-cell mass in European subjects with type 2 diabetes,” Diabetes, Obesity and Metabolism, vol. 10, supplement 4, pp. 32–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Espes, J. Lau, and P. O. Carlsson, “Increased circulating levels of betatrophin in individuals with long-standing type 1 diabetes,” Diabetologia, vol. 57, no. 1, pp. 50–53, 2014. View at Google Scholar
  9. J. C. Levy, D. R. Matthews, and M. P. Hermans, “Correct homeostasis model assessment (HOMA) evaluation uses the computer program,” Diabetes Care, vol. 21, no. 12, pp. 2191–2192, 1998. View at Google Scholar · View at Scopus
  10. N. Friedrich, B. Thuesen, T. Jorgensen et al., “The association between IGF-I and insulin resistance: a general population study in Danish adults,” Diabetes Care, vol. 35, no. 4, pp. 768–773, 2012. View at Publisher · View at Google Scholar
  11. A. Gautier, R. Roussel, C. Lange et al., “Effects of genetic susceptibility for type 2 diabetes on the evolution of glucose homeostasis traits before and after diabetes diagnosis: data from the D.E.S.I.R. study,” Diabetes, vol. 60, no. 10, pp. 2654–2663, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. E. Inzucchi, R. M. Bergenstal, J. B. Buse et al., “Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American diabetes association (ADA) and the European association for the study of diabetes (EASD),” Diabetes Care, vol. 35, no. 6, pp. 1364–1379, 2012. View at Publisher · View at Google Scholar
  13. R. Zhang, “Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels,” Biochemical and Biophysical Research Communications, vol. 424, no. 4, pp. 786–792, 2012. View at Publisher · View at Google Scholar
  14. X. Y. Dong, X. W. Pang, S. T. Yu et al., “Identification of genes differentially expressed in human hepatocellular carcinoma by a modified suppression subtractive hybridization method,” International Journal of Cancer, vol. 112, no. 2, pp. 239–248, 2004. View at Google Scholar
  15. G. Ren, J. Y. Kim, and C. M. Smas, “Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 303, no. 3, pp. E334–E351, 2012. View at Publisher · View at Google Scholar
  16. F. Quagliarini, Y. Wang, J. Kozlitina et al., “Atypical angiopoietin-like protein that regulates ANGPTL3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 48, pp. 19751–19756, 2012. View at Publisher · View at Google Scholar
  17. A. Fenzl, B. K. Itariu, L. Kosi et al., “Circulating betatrophin correlates with atherogenic lipid profiles but not with glucose and insulin levels in insulin-resistant individuals,” Diabetologia, vol. 57, no. 6, pp. 1204–1208, 2014. View at Publisher · View at Google Scholar