Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2014, Article ID 412354, 16 pages
http://dx.doi.org/10.1155/2014/412354
Review Article

Updates in Reproduction Coming from the Endocannabinoid System

1Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, via Medina 40, 80133 Napoli, Italy
2Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
3European Center for Brain Research (CERC), Santa Lucia Foundation, 00143 Rome, Italy
4Department of Psychological and Brain Sciences, The Kinsey Institute for Research in Sex, Gender, and Reproduction, Indiana University, Bloomington, IN 47405, USA
5State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

Received 31 July 2013; Revised 20 November 2013; Accepted 4 December 2013; Published 16 January 2014

Academic Editor: Małgorzata Kotula-Balak

Copyright © 2014 Rosaria Meccariello et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Schuel, L. J. Burkman, J. Lippes et al., “N-Acylethanolamines in human reproductive fluids,” Chemistry and Physics of Lipids, vol. 121, no. 1-2, pp. 211–227, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. W. A. Devane, L. Hanus, A. Breuer et al., “Isolation and structure of a brain constituent that binds to the cannabinoid receptor,” Science, vol. 258, no. 5090, pp. 1946–1949, 1992. View at Google Scholar · View at Scopus
  3. T. Sugiura, S. Kondo, A. Sukagawa et al., “2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain,” Biochemical and Biophysical Research Communications, vol. 215, no. 1, pp. 89–97, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. L. A. Borgen, W. M. Davis, and H. B. Pace, “Effects of synthetic Δ9-tetrahydrocannabinol on pregnancy and offspring in the rat,” Toxicology and Applied Pharmacology, vol. 20, no. 4, pp. 480–486, 1971. View at Google Scholar · View at Scopus
  5. L. A. Matsuda, S. J. Lolait, M. J. Brownstein, A. C. Young, and T. I. Bonner, “Structure of a cannabinoid receptor and functional expression of the cloned cDNA,” Nature, vol. 346, no. 6284, pp. 561–564, 1990. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Munro, K. L. Thomas, and M. Abu-Shaar, “Molecular characterization of a peripheral receptor for cannabinoids,” Nature, vol. 365, no. 6441, pp. 61–65, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Schuel, E. Goldstein, R. Mechoulam, A. M. Zimmerman, and S. Zimmerman, “Anandamide (arachidonylethanolamide), a brain cannabinoid receptor agonist, reduces sperm fertilizing capacity in sea urchins by inhibiting the acrosome reaction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 16, pp. 7678–7682, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. S. K. Das, B. C. Paria, I. Chakraborty, and S. K. Dey, “Cannabinoid ligand-receptor signaling in the mouse uterus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 10, pp. 4332–4336, 1995. View at Google Scholar · View at Scopus
  9. B. C. Paria, S. K. Das, and S. K. Dey, “The preimplantation mouse embryo is a target for cannabinoid ligand- receptor signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 21, pp. 9460–9464, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. B. C. Paria, W. Ma, D. M. Andrenyak et al., “Effects of cannabinoids on preimplantation mouse embryo development and implantation are mediated by brain-type cannabinoid receptors,” Biology of Reproduction, vol. 58, no. 6, pp. 1490–1495, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. Z.-M. Yang, B. C. Paria, and S. K. Dey, “Activation of brain-type cannabinoid receptors interferes with preimplantation mouse embryo development,” Biology of Reproduction, vol. 55, no. 4, pp. 756–761, 1996. View at Google Scholar · View at Scopus
  12. H. Wang, H. Matsumoto, Y. Guo, B. C. Paria, R. L. Roberts, and S. K. Dey, “Differential G protein-coupled cannabinoid receptor signaling by anandamide directs blastocyst activation for implantation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 14914–14919, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. P. C. Schmid, B. C. Paria, R. J. Krebsbach, H. H. O. Schmid, and S. K. Dey, “Changes in anandamide levels in mouse uterus are associated with uterine receptivity for embryo implantation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 4188–4192, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Karasu, T. H. Marczylo, M. Maccarrone, and J. C. Konje, “The role of sex steroid hormones, cytokines and the endocannabinoid system in female fertility,” Human Reproduction Update, vol. 17, no. 3, pp. 347–361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. B. C. Paria, D. D. Deutsch, and S. K. Dey, “The uterus is a potential site for anandamide synthesis and hydrolysis: differential profiles of anandamide synthase and hydrolase activities in the mouse uterus during the periimplantation period,” Molecular Reproduction and Development, vol. 45, no. 2, pp. 183–192, 1996. View at Google Scholar
  16. B. C. Paria, X. Zhao, J. Wang, S. K. Das, and S. K. Dey, “Fatty-acid amide hydrolase is expressed in the mouse uterus and embryo during the periimplantation period,” Biology of Reproduction, vol. 60, no. 5, pp. 1151–1157, 1999. View at Google Scholar · View at Scopus
  17. Y. Guo, H. Wang, Y. Okamoto et al., “N-acylphosphatidylethanolamine-hydrolyzing phospholipase D is an important determinant of uterine anandamide levels during implantation,” The Journal of Biological Chemistry, vol. 280, no. 25, pp. 23429–23432, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Wang, H. Xie, X. Sun et al., “Differential regulation of endocannabinoid synthesis and degradation in the uterus during embryo implantation,” Prostaglandins and other Lipid Mediators, vol. 83, no. 1-2, pp. 62–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. O. M. H. Habayeb, A. H. Taylor, M. D. Evans et al., “Plasma levels of the endocannabinoid anandamide in women—a potential role in pregnancy maintenance and labor?” The Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5482–5487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Trabucco, G. Acone, A. Marenna et al., “Endocannabinoid system in first trimester placenta: low FAAH and high CB1 expression characterize spontaneous miscarriage,” Placenta, vol. 30, no. 6, pp. 516–522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Schuel, L. J. Burkman, J. Lippes et al., “Evidence that anandamide-signaling regulates human sperm functions required for fertilization,” Molecular Reproduction and Development, vol. 63, no. 3, pp. 376–387, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Rossato, F. I. Popa, M. Ferigo, G. Clari, and C. Foresta, “Human sperm express cannabinoid receptor Cb1, the activation of which inhibits motility, acrosome reaction, and mitochondrial function,” The Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 2, pp. 984–991, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Maccarrone, B. Barboni, A. Paradisi et al., “Characterization of the endocannabinoid system in boar spermatozoa and implications for sperm capacitation and acrosome reaction,” Journal of Cell Science, vol. 118, no. 19, pp. 4393–4404, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. G. Gervasi, C. Osycka-Salut, J. Caballero et al., “Anandamide capacitates bull spermatozoa through CB1 and TRPV1 activation,” PLoS ONE, vol. 6, no. 2, Article ID e16993, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Aquila, C. Guido, A. Santoro et al., “Rimonabant (SR141716) induces metabolism and acquisition of fertilizing ability in human sperm,” British Journal of Pharmacology, vol. 159, no. 4, pp. 831–841, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Francavilla, N. Battista, A. Barbonetti et al., “Characterization of the endocannabinoid system in human spermatozoa and involvement of transient receptor potential vanilloid 1 receptor in their fertilizing ability,” Endocrinology, vol. 150, no. 10, pp. 4692–4700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Catanzaro, N. Battista, G. Rossi et al., “Effect of capacitation on the endocannabinoid system of mouse sperm,” Molecular and Cellular Endocrinology, vol. 343, no. 1-2, pp. 88–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Sun and S. K. Dey, “Endocannabinoid signaling in female reproduction,” ACS Chemical Neuroscience, vol. 3, no. 5, pp. 349–355, 2012. View at Google Scholar
  29. S. E. M Lewis, R. Paro, L. Borriello et al., “Long-term use of HU210 adversely affects spermatogenesis in rats by modulating the endocannabinoid system,” International Journal of Andrology, vol. 35, no. 5, pp. 731–740, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. B. M. Fonseca, N. A. Teixeira, M. Almada, A. H. Taylor, J. C. Konje, and G. Correia-da-Silva, “Modulation of the novel cannabinoid receptor-GPR55-during rat fetoplacental development,” Placenta, vol. 32, no. 6, pp. 462–469, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Baker, G. Pryce, W. L. Davies, and C. R. Hiley, “In silico patent searching reveals a new cannabinoid receptor,” Trends in Pharmacological Sciences, vol. 27, no. 1, pp. 1–4, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Grimaldi, P. Orlando, S. di Siena et al., “The endocannabinoid system and pivotal role of the CB2 receptor in mouse spermatogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 27, pp. 11131–11136, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. B. M. Fonseca, G. Correia-da-Silva, A. H. Taylor et al., “The endocannabinoid 2-arachidonoylglycerol (2-AG) and metabolizing enzymes during rat fetoplacental development: a role in uterine remodelling,” The International Journal of Biochemistry and Cell Biology, vol. 42, no. 11, pp. 1884–1892, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Cobellis, G. Ricci, G. Cacciola et al., “A gradient of 2-arachidonoylglycerol regulates mouse epididymal sperm cell start-up,” Biology of Reproduction, vol. 82, no. 2, pp. 451–458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. L. S. Lewis, C. Rapino, M. di Tommaso et al., “Differences in the endocannabinoid system of sperm from fertile and infertile men,” PLoS ONE, vol. 7, no. 10, Article ID e47704, 2012. View at Google Scholar
  36. M. Maccarrone, H. Valensise, M. Bari, N. Lazzarin, C. Romanini, and A. Finazzi-Agrò, “Relation between decreased anandamide hydrolase concentrations in human lymphocytes and miscarriage,” The Lancet, vol. 355, no. 9212, pp. 1326–1329, 2000. View at Google Scholar · View at Scopus
  37. M. Maccarrone, T. Bisogno, H. Valensise et al., “Low fatty acid amide hydrolase and high anandamide levels are associated with failure to achieve an ongoing pregnancy after IVF and embryo transfer,” Molecular Human Reproduction, vol. 8, no. 2, pp. 188–195, 2002. View at Google Scholar · View at Scopus
  38. M. R. El-Talatini, A. H. Taylor, and J. C. Konje, “Fluctuation in anandamide levels from ovulation to early pregnancy in in-vitro fertilization-embryo transfer women, and its hormonal regulation,” Human Reproduction, vol. 24, no. 8, pp. 1989–1998, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Maccarrone, H. Valensise, M. Bari, N. Lazzarin, C. Romanini, and A. Finazzi-Agrò, “Progesterone up-regulates anandamide hydrolase in human lymphocytes: Role of cytokines and implications for fertility,” The Journal of Immunology, vol. 166, no. 12, pp. 7183–7189, 2001. View at Google Scholar · View at Scopus
  40. R. J. A. Helliwell, L. W. Chamley, K. Blake-Palmer et al., “Characterization of the endocannabinoid system in early human pregnancy,” The Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 10, pp. 5168–5174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Rossi, V. Gasperi, R. Paro, D. Barsacchi, S. Cecconi, and M. Maccarrone, “Follicle-stimulating hormone activates fatty acid amide hydrolase by protein kinase A and aromatase-dependent pathways in mouse primary Sertoli cells,” Endocrinology, vol. 148, no. 3, pp. 1431–1439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Grimaldi, M. Pucci, S. di Siena et al., “The faah gene is the first direct target of estrogen in the testis: role of histone demethylase LSD1,” Cellular and Molecular Life Sciences, vol. 69, no. 24, pp. 4177–4190, 2012. View at Google Scholar
  43. T. Chioccarelli, G. Cacciola, L. Altucci et al., “Cannabinoid receptor 1 influences chromatin remodeling in mouse spermatids by affecting content of transition protein 2 mRNA and histone displacement,” Endocrinology, vol. 151, no. 10, pp. 5017–5029, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Cacciola, T. Chioccarelli, L. Altucci et al., “Low 17beta-estradiol levels in Cnr1 knock-out mice affect spermatid chromatin remodeling by interfering with chromatin reorganization,” Biology of Reproduction, vol. 88, no. 6, p. 152, 2013. View at Google Scholar
  45. G. Cacciola, T. Chioccarelli, L. Altucci et al., “Nuclear size as estrogen-responsive chromatin quality parameter of mouse spermatozoa,” General and Comparative Endocrinology, vol. 193, pp. 201–209, 2013. View at Google Scholar
  46. G. Cobellis, R. Meccariello, G. Fienga, R. Pierantoni, and S. Fasano, “Cytoplasmic and nuclear Fos protein forms regulate resumption of spermatogenesis in the frog, Rana esculenta,” Endocrinology, vol. 143, no. 1, pp. 163–170, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Pierantoni, G. Cobellis, R. Meccariello, and S. Fasano, “Evolutionary aspects of cellular communication in the vertebrate hypothalamo-hypophysio-gonadal axis,” International Review of Cytology, vol. 218, pp. 69–141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Chianese, T. Chioccarelli, G. Cacciola et al., “The contribution of lower vertebrate animal models in human reproduction research,” General and Comparative Endocrinology, vol. 171, no. 1, pp. 17–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. R. Elphick, “The evolution and comparative neurobiology of endocannabinoid signalling,” Philosophical Transactions of the Royal Society B, vol. 367, no. 1607, pp. 3201–3215, 2012. View at Google Scholar
  50. S. Fasano, R. Meccariello, G. Cobellis et al., “The endocannabinoid system: an ancient signaling involved in the control of male fertility,” Annals of the New York Academy of Sciences, vol. 1163, pp. 112–124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Battista, R. Meccariello, G. Cobellis et al., “The role of endocannabinoids in gonadal function and fertility along the evolutionary axis,” Molecular and Cellular Endocrinology, vol. 355, no. 1, pp. 1–14, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. G. A. Buznikov, L. A. Nikitina, V. V. Bezuglov et al., “A putative 'pre-nervous' endocannabinoid system in early echinoderm development,” Developmental Neuroscience, vol. 32, no. 1, pp. 1–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Meriaux, K. Arafah, A. Tasiemski et al., “Multiple changes in peptide and lipid expression associated with regeneration in the nervous system of the medicinal leech,” PLoS ONE, vol. 6, no. 4, Article ID e18359, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Schuel and L. J. Burkman, “A tale of two cells: endocannabinoid-signaling regulates functions of neurons and sperm,” Biology of Reproduction, vol. 73, no. 6, pp. 1078–1086, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Meizel, “The sperm, a neuron with a tail: 'Neuronal' receptors in mammalian sperm,” Biological Reviews of the Cambridge Philosophical Society, vol. 79, no. 4, pp. 713–732, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Wang, S. K. Dey, and M. Maccarrone, “Jekyll and Hyde: two faces of cannabinoid signaling in male and female fertility,” Endocrine Reviews, vol. 27, no. 5, pp. 427–448, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Cottone, A. Guastalla, K. Mackie, and M. F. Franzoni, “Endocannabinoids affect the reproductive functions in teleosts and amphibians,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. S41–S45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Cottone, C. Salio, M. Conrath, and M. F. Franzoni, “Xenopus laevis CB1 cannabinoid receptor: molecular cloning and mRNA distribution in the central nervous system,” The Journal of Comparative Neurology, vol. 464, no. 4, pp. 487–496, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. G. Cobellis, G. Cacciola, D. Scarpa et al., “Endocannabinoid system in frog and rodent testis: type-1 cannabinoid receptor and fatty acid amide hydrolase activity in male germ cells,” Biology of Reproduction, vol. 75, no. 1, pp. 82–89, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Meccariello, R. Chianese, G. Cacciola, G. Cobellis, R. Pierantoni, and S. Fasano, “Type-1 cannabinoid receptor expression in the frog, Rana esculenta, tissues: a possible involvement in the regulation of testicular activity,” Molecular Reproduction and Development, vol. 73, no. 5, pp. 551–558, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Meccariello, R. Chianese, G. Cobellis, R. Pierantoni, and S. Fasano, “Cloning of type 1 cannabinoid receptor in Rana esculenta reveals differences between genomic sequence and cDNA,” FEBS Journal, vol. 274, no. 11, pp. 2909–2920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Ricci, G. Cacciola, L. Altucci et al., “Endocannabinoid control of sperm motility: the role of epididymus,” General and Comparative Endocrinology, vol. 153, no. 1–3, pp. 320–322, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. M. G. Gervasi, M. Rapanelli, M. L. Ribeiro et al., “The endocannabinoid system in bull sperm and bovine oviductal epithelium: role of anandamide in sperm-oviduct interaction,” Reproduction, vol. 137, no. 3, pp. 403–414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. F. A. Palermo, B. Ruggeri, G. Mosconi, M. Virgili, and A. M. Polzonetti-Magni, “Partial cloning of CB1 cDNA and CB1 mRNA changes in stress responses in the Solea solea,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. S52–S59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Cottone, V. Pomatto, F. Cerri et al., “Cannabinoid receptors are widely expressed in goldfish: molecular cloning of a CB2-like receptor and evaluation of CB1 and CB2 mRNA expression profiles in different organs,” Fish Physiology and Biochemistry, 2013. View at Publisher · View at Google Scholar
  66. B. Ruggeri, L. Soverchia, G. Mosconi, M. F. Franzoni, E. Cottone, and A. M. Polzonetti-Magni, “Changes of gonadal CB1 cannabinoid receptor mRNA in the gilthead seabream, Sparus aurata, during sex reversal,” General and Comparative Endocrinology, vol. 150, no. 2, pp. 263–269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. B. B. Gorzalka and S. S. Dang, “Minireview: Endocannabinoids and gonadal hormones: bidirectional interactions in physiology and behavior,” Endocrinology, vol. 153, no. 3, pp. 1016–1024, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. T. T. Brown and A. S. Dobs, “Endocrine effects of marijuana,” Journal of Clinical Pharmacology, vol. 42, no. 11, pp. 90S–96S, 2002. View at Google Scholar · View at Scopus
  69. H. H. López, “Cannabinoid-hormone interactions in the regulation of motivational processes,” Hormones and Behavior, vol. 58, no. 1, pp. 100–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. T. Wenger, C. Ledent, V. Csernus, and I. Gerendai, “The central cannabinoid receptor inactivation suppresses endocrine reproductive functions,” Biochemical and Biophysical Research Communications, vol. 284, no. 2, pp. 363–368, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Tsou, S. Brown, M. C. Sañudo-Peña, K. Mackie, and J. M. Walker, “Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system,” Neuroscience, vol. 83, no. 2, pp. 393–411, 1998. View at Publisher · View at Google Scholar · View at Scopus
  72. L. Cristino, L. de Petrocellis, G. Pryce, D. Baker, V. Guglielmotti, and V. Di Marzo, “Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain,” Neuroscience, vol. 139, no. 4, pp. 1405–1415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. J.-P. Gong, E. S. Onaivi, H. Ishiguro et al., “Cannabinoid CB2 receptors: immunohistochemical localization in rat brain,” Brain Research, vol. 1071, no. 1, pp. 10–23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Pierantoni, G. Cobellis, R. Meccariello et al., “Testicular gonadotropin-releasing hormone activity, progression of spermatogenesis, and sperm transport in vertebrates,” Annals of the New York Academy of Sciences, vol. 1163, pp. 279–291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. L. L. Murphy, R. M. Muñoz, B. A. Adrian, and M. A. Villanúa, “Function of cannabinoid receptors in the neuroendocrine regulation of hormone secretion,” Neurobiology of Disease, vol. 5, no. 6, pp. 432–446, 1998. View at Publisher · View at Google Scholar · View at Scopus
  76. C. M. Gammon, G. M. Freeman Jr., W. Xie, S. L. Petersen, and W. C. Wetsel, “Regulation of gonadotropin-releasing hormone secretion by cannabinoids,” Endocrinology, vol. 146, no. 10, pp. 4491–4499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Scorticati, J. Fernández-Solari, A. de Laurentiis et al., “The inhibitory effect of anandamide on luteinizing hormone-releasing hormone secretion is reversed by estrogen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 32, pp. 11891–11896, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Oláh, H. Milloh, and T. Wenger, “The role of endocannabinoids in the regulation of luteinizing hormone and prolactin release. Differences between the effects of AEA and 2AG,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. S36–S40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Nakane and Y. Oka, “Excitatory action of GABA in the terminal nerve gonadotropin-releasing hormone neurons,” Journal of Neurophysiology, vol. 103, no. 3, pp. 1375–1384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. I. Farkas, I. Kalló, L. Deli et al., “Retrograde endocannabinoid signaling reduces GABAergic synaptic transmission to gonadotropin-releasing hormone neurons,” Endocrinology, vol. 151, no. 12, pp. 5818–5829, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. Z. Chu and S. M. Moenter, “Endogenous activation of metabotropic glutamate receptors modulates GABAergic transmission to gonadotropin-releasing hormone neurons and alters their firing rate: a possible local feedback circuit,” The Journal of Neuroscience, vol. 25, no. 24, pp. 5740–5749, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. P. Chen and S. M. Moenter, “GABAergic transmission to gonadotropin-releasing hormone (GnRH) neurons is regulated by GnRH in a concentration-dependent manner engaging multiple signaling pathways,” The Journal of Neuroscience, vol. 29, no. 31, pp. 9809–9818, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. G. Moldrich and T. Wenger, “Localization of the CB1 cannabinoid receptor in the rat brain. An immunohistochemical study,” Peptides, vol. 21, no. 11, pp. 1735–1742, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. A. C. Shivachar, “Cannabinoids inhibit sodium-dependent, high-affinity excitatory amino acid transport in cultured rat cortical astrocytes,” Biochemical Pharmacology, vol. 73, no. 12, pp. 2004–2011, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. K. M. Glanowska and S. M. Moenter, “Endocannabinoids and prostaglandins both contribute to GnRH neuron-GABAergic afferent local feedback circuits,” Journal of Neurophysiology, vol. 106, no. 6, pp. 3073–3081, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. R. Chianese, G. Cobellis, R. Pierantoni, S. Fasano, and R. Meccariello, “Non-mammalian vertebrate models and the endocannabinoid system: Relationships with gonadotropin-releasing hormone,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. S46–S51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. R. Chianese, V. Ciaramella, S. Fasano, R. Pierantoni, and R. Meccariello, “Anandamide modulates the expression of GnRH-II and GnRHRs in frog, Rana esculenta, diencephalon,” General and Comparative Endocrinology, vol. 173, no. 3, pp. 389–395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Meccariello, M. F. Franzoni, R. Chianese et al., “Interplay between the endocannabinoid system and GnRH-I in the forebrain of the anuran amphibian Rana esculenta,” Endocrinology, vol. 149, no. 5, pp. 2149–2158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. A. E. Oakley, D. K. Clifton, and R. A. Steiner, “Kisspeptin signaling in the brain,” Endocrine Reviews, vol. 30, no. 6, pp. 713–743, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Clarkson and A. E. Herbison, “Oestrogen, kisspeptin, GPR54 and the pre-ovulatory luteinising hormone surge,” Journal of Neuroendocrinology, vol. 21, no. 4, pp. 305–311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. X. D. de Tassigny and W. H. Colledge, “The role of Kisspeptin signaling in reproduction,” Physiology, vol. 25, no. 4, pp. 207–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Meccariello, R. Chianese, S. Fasano, and R. Pierantoni, “Endocannabinoids and kisspeptins: two modulators in fight for the regulation of GnRH activity,” in Gonadotropins, J. Vizcarra, Ed., pp. 57–88, InTech, Rijeka, Croatia, 2013. View at Google Scholar
  93. S. González, G. Mauriello-Romanazzi, F. Berrendero, J. A. Ramos, M. Fosca Franzoni, and J. Fernández-Ruiz, “Decreased cannabinoid CB1 receptor mRNA levels and immunoreactivity in pituitary hyperplasia induced by prolonged exposure to estrogens,” Pituitary, vol. 3, no. 4, pp. 221–226, 2000. View at Publisher · View at Google Scholar · View at Scopus
  94. S. González, T. Bisogno, T. Wenger et al., “Sex steroid influence on cannabinoid CB1 receptor mRNA and endocannabinoid levels in the anterior pituitary gland,” Biochemical and Biophysical Research Communications, vol. 270, no. 1, pp. 260–266, 2000. View at Publisher · View at Google Scholar · View at Scopus
  95. H. B. Bradshaw, N. Rimmerman, J. F. Krey, and J. M. Walker, “Sex and hormonal cycle differences in rat brain levels of pain-related cannabimimetic lipid mediators,” American Journal of Physiology: Regulatory Integrative and Comparative Physiology, vol. 291, no. 2, pp. R349–R358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. N. S. Waleh, B. F. Cravatt, A. Apte-Deshpande, A. Terao, and T. S. Kilduff, “Transcriptional regulation of the mouse fatty acid amide hydrolase gene,” Gene, vol. 291, no. 1-2, pp. 203–210, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. M. N. Hill, E. S. Karacabeyli, and B. B. Gorzalka, “Estrogen recruits the endocannabinoid system to modulate emotionality,” Psychoneuroendocrinology, vol. 32, no. 4, pp. 350–357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. O. M. H. Habayeb, S. C. Bell, and J. C. Konje, “Endogenous cannabinoids: metabolism and their role in reproduction,” Life Sciences, vol. 70, no. 17, pp. 1963–1977, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Maccarrone, V. Gasperi, F. Fezza, A. Finazzi-Agrò, and A. Rossi, “Differential regulation of fatty acid amide hydrolase promoter in human immune cells and neuronal cells by leptin and progesterone,” European Journal of Biochemistry, vol. 271, no. 23-24, pp. 4666–4676, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. S. K. Mani, A. Mitchell, and B. W. O'Malley, “Progesterone receptor and dopamine receptors are required in Δ9-tetrahydrocannabinol modulation of sexual receptivity in female rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 3, pp. 1249–1254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  101. J. H. Gordon, B. L. Bromley, R. A. Gorski, and E. Zimmermann, “Δ9-Tetrahydrocannabinol enhancement of lordosis behavior in estrogen treated female rats,” Pharmacology Biochemistry and Behavior, vol. 8, no. 5, pp. 603–608, 1978. View at Google Scholar · View at Scopus
  102. R. M. Craft and M. D. Leitl, “Gonadal hormone modulation of the behavioral effects of Δ9-tetrahydrocannabinol in male and female rats,” European Journal of Pharmacology, vol. 578, no. 1, pp. 37–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. L. Fattore, M. S. Spano, S. Altea, F. Angius, P. Fadda, and W. Fratta, “Cannabinoid self-administration in rats: sex differences and the influence of ovarian function,” British Journal of Pharmacology, vol. 152, no. 5, pp. 795–804, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. J. M. Daniel, P. J. Winsauer, I. N. Brauner, and J. M. Moerschbaecher, “Estrogen improves response accuracy and attenuates the disruptive effects of Δ9-THC in ovariectomized rats responding under a multiple schedule of repeated acquisition and performance,” Behavioral Neuroscience, vol. 116, no. 6, pp. 989–998, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. R. Pierantoni, G. Cobellis, R. Meccariello et al., “CB1 activity in male reproduction: mammalian and nonmammalian animal models,” Vitamins and Hormones, vol. 81, no. C, pp. 367–387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. G. Cacciola, R. Chianese, T. Chioccarelli et al., “Cannabinoids and reproduction: a lasting and intriguing history,” Pharmaceuticals, vol. 3, no. 10, pp. 3275–3323, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. T. H. Marczylo, P. M. W. Lam, A. A. Amoako, and J. C. Konje, “Anandamide levels in human female reproductive tissues: solid-phase extraction and measurement by ultraperformance liquid chromatography tandem mass spectrometry,” Analytical Biochemistry, vol. 400, no. 2, pp. 155–162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. M. G. Gervasi, T. H. Marczylo, P. M. Lam et al., “Anandamide levels fluctuate in the bovine oviduct during the oestrous cycle,” PLoS ONE, vol. 8, no. 8, Article ID e72521, 2013. View at Google Scholar
  109. M. C. Gye, H. H. Kang, and H. J. Kang, “Expression of cannabinoid receptor 1 in mouse testes,” Archives of Andrology, vol. 51, no. 3, pp. 247–255, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. G. Cacciola, T. Chioccarelli, K. Mackie et al., “Expression of type-1 cannabinoid receptor during rat postnatal testicular development: possible involvement in adult leydig cell differentiation,” Biology of Reproduction, vol. 79, no. 4, pp. 758–765, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. R. Chianese, V. Ciaramella, D. Scarpa, S. Fasano, R. Pierantoni, and R. Meccariello, “Anandamide regulates the expression of GnRH1, GnRH2, and GnRH-Rs in frog testis,” American Journal of Physiology: Endocrinology and Metabolism, vol. 303, no. 4, pp. E475–E487, 2012. View at Google Scholar
  112. S. C. Mizrak and F. M. F. van Dissel-Emiliani, “Transient receptor potential vanilloid receptor-1 confers heat resistance to male germ cells,” Fertility and Sterility, vol. 90, no. 4, pp. 1290–1293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. R. B. White, J. A. Eisen, T. L. Kasten, and R. D. Fernald, “Second gene for gonadotropin-releasing hormone in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 1, pp. 305–309, 1998. View at Publisher · View at Google Scholar · View at Scopus
  114. W. van Biljon, S. Wykes, S. Scherer, S. A. Krawetz, and J. Hapgood, “Type II gonadotropin-releasing hormone receptor transcripts in human sperm,” Biology of Reproduction, vol. 67, no. 6, pp. 1741–1749, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. Y. M. Lin, S. L. Poon, J. H. Choi, J. S. N. Lin, P. C. K. Leung, and B. M. Huang, “Transcripts of testicular gonadotropin-releasing hormone, steroidogenic enzymes, and intratesticular testosterone levels in infertile men,” Fertility and Sterility, vol. 90, no. 5, pp. 1761–1768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. G. Cobellis, R. Meccariello, S. Minucci, C. Palmiero, R. Pierantoni, and S. Fasano, “Cytoplasmic versus nuclear localization of fos-related proteins in the frog, Rana esculenta, testis: In vivo and direct in vitro effect of a gonadotropin-releasing hormone agonist,” Biology of Reproduction, vol. 68, no. 3, pp. 954–960, 2003. View at Publisher · View at Google Scholar · View at Scopus
  117. N. Treen, N. Itoh, H. Miura et al., “Mollusc gonadotropin-releasing hormone directly regulates gonadal functions: a primitive endocrine system controlling reproduction,” General and Comparative Endocrinology, vol. 176, no. 2, pp. 167–172, 2012. View at Publisher · View at Google Scholar · View at Scopus
  118. P. Morales, C. Pasten, and E. Pizarro, “Inhibition of in vivo and in vitro fertilization in rodents by gonadotropin-releasing hormone antagonists,” Biology of Reproduction, vol. 67, no. 4, pp. 1360–1365, 2002. View at Google Scholar · View at Scopus
  119. R. Chianese, V. Ciaramella, D. Scarpa, S. Fasano, R. Pierantoni, and R. Meccariello, “Endocannabinoids and endovanilloids: a possible balance in the regulation of the testicular GnRH signaling,” International Journal of Endocrinology, vol. 2013, Article ID 904748, 9 pages, 2013. View at Publisher · View at Google Scholar
  120. M. Rinaldi-Carmona, F. Barth, M. Heaulme et al., “SR141716A, a potent and selective antagonist of the brain cannabinoid receptor,” FEBS Letters, vol. 350, no. 2-3, pp. 240–244, 1994. View at Publisher · View at Google Scholar · View at Scopus
  121. G. Cacciola, T. Chioccarelli, G. Ricci et al., “The endocannabinoid system in vertebrate male reproduction: a comparative overview,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. S24–S30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. X. Sun, H. Wang, M. Okabe et al., “Genetic loss of Faah compromises male fertility in mice,” Biology of Reproduction, vol. 80, no. 2, pp. 235–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. A. A. Amoako, T. H. Marczylo, E. L. Marczylo et al., “Anandamide modulates human sperm motility: implications for men with asthenozoospermia and oligoasthenoteratozoospermia,” Human Reproduction, vol. 28, no. 8, pp. 2058–2066, 2013. View at Google Scholar
  124. X. Sun and S. K. Dey, “Cannabinoid/Endocannabinoid signaling impact on early pregnancy events,” Current Topics in Behavioral Neurosciences, vol. 1, pp. 255–273, 2009. View at Google Scholar · View at Scopus
  125. M. R. El-Talatini, A. H. Taylor, and J. C. Konje, “The relationship between plasma levels of the endocannabinoid, anandamide, sex steroids, and gonadotrophins during the menstrual cycle,” Fertility and Sterility, vol. 93, no. 6, pp. 1989–1996, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. N. Lazzarin, H. Valensise, M. Bari et al., “Fluctuations of fatty acid amide hydrolase and anandamide levels during the human ovulatory cycle,” Gynecological Endocrinology, vol. 18, no. 4, pp. 212–218, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. J. Rossant and P. P. L. Tam, “Emerging asymmetry and embryonic patterning in early mouse development,” Developmental Cell, vol. 7, no. 2, pp. 155–164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. M. Zernicka-Goetz, “Cleavage pattern and emerging asymmetry of the mouse embryo,” Nature Reviews Molecular Cell Biology, vol. 6, no. 12, pp. 919–928, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. H. Wang and S. K. Dey, “Roadmap to embryo implantation: clues from mouse models,” Nature Reviews Genetics, vol. 7, no. 3, pp. 185–199, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. H. W. Chan, N. C. McKirdy, H. N. Peiris, G. E. Rice, and M. D. Mitchell, “The role of endocannabinoids in pregnancy,” Reproduction, vol. 146, no. 3, pp. R101–R109, 2013. View at Google Scholar
  131. B. C. Paria, H. Song, X. Wang et al., “Dysregulated cannabinoid signaling disrupts uterine receptivity for embryo implantation,” The Journal of Biological Chemistry, vol. 276, no. 23, pp. 20523–20528, 2001. View at Publisher · View at Google Scholar · View at Scopus
  132. H. Wang, Y. Guo, D. Wang et al., “Aberrant cannabinoid signaling impairs oviductal transport of embryos,” Nature Medicine, vol. 10, no. 10, pp. 1074–1080, 2004. View at Google Scholar · View at Scopus
  133. H. Wang, H. Xie, Y. Guo et al., “Fatty acid amide hydrolase deficiency limits early pregnancy events,” Journal of Clinical Investigation, vol. 116, no. 8, pp. 2122–2131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. A. W. Horne, J. A. Phillips III, N. Kane et al., “CB1 expression is attenuated in Fallopian tube and decidua of women with ectopic pregnancy,” PLoS ONE, vol. 3, no. 12, Article ID e3969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. A. K. Gebeh, J. M. Willets, E. L. Marczylo, A. H. Taylor, and J. C. Konje, “Ectopic pregnancy is associated with high anandamide levels and aberrant expression of FAAH and CB1 in fallopian tubes,” The The Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 8, pp. 2827–2835, 2012. View at Google Scholar
  136. M. L. Ribeiro, C. A. Vercelli, M. S. Sordelli et al., “17β-oestradiol and progesterone regulate anandamide synthesis in the rat uterus,” Reproductive BioMedicine Online, vol. 18, no. 2, pp. 209–218, 2009. View at Google Scholar · View at Scopus
  137. M. S. Sordelli, J. S. Beltrame, M. Cella et al., “Interaction between lysophosphatidic acid, prostaglandins and the endocannabinoid system during the window of implantation in the rat uterus,” PLoS ONE, vol. 7, no. 9, Article ID e46059, 2012. View at Google Scholar
  138. O. M. H. Habayeb, A. H. Taylor, S. C. Bell, D. J. Taylor, and J. C. Konje, “Expression of the endocannabinoid system in human first trimester placenta and its role in trophoblast proliferation,” Endocrinology, vol. 149, no. 10, pp. 5052–5060, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. S. Varmuza, V. Prideaux, R. Kothary, and J. Rossant, “Polytene chromosomes in mouse trophoblast giant cells,” Development, vol. 102, no. 1, pp. 127–134, 1988. View at Google Scholar · View at Scopus
  140. J. Rossant and J. C. Cross, “Placental development: lessons from mouse mutants,” Nature Reviews Genetics, vol. 2, no. 7, pp. 538–548, 2001. View at Publisher · View at Google Scholar · View at Scopus
  141. E. D. Watson and J. C. Cross, “Development of structures and transport functions in the mouse placenta,” Physiology, vol. 20, no. 3, pp. 180–193, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. X. Sun, H. Xie, J. Yang, H. Wang, H. B. Bradshaw, and S. K. Dey, “Endocannabinoid signaling directs differentiation of trophoblast cell lineages and placentation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 39, pp. 16887–16892, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. H. Xie, X. Sun, Y. Piao et al., “Silencing or amplification of endocannabinoid signaling in blastocysts via CB1 compromises trophoblast cell migration,” The Journal of Biological Chemistry, vol. 287, no. 38, pp. 32288–32297, 2012. View at Google Scholar
  144. S. P. Kenney, R. Kekuda, P. D. Prasad, F. H. Leibach, L. D. Devoe, and V. Ganapathy, “Cannabinoid receptors and their role in the regulation of the serotonin transporter in human placenta,” American Journal of Obstetrics and Gynecology, vol. 181, no. 2, pp. 491–497, 1999. View at Publisher · View at Google Scholar · View at Scopus
  145. B. Park, H. M. Gibbons, M. D. Mitchell, and M. Glass, “Identification of the CB1 cannabinoid receptor and fatty acid amide hydrolase (FAAH) in the human placenta,” Placenta, vol. 24, no. 10, pp. 990–995, 2003. View at Google Scholar · View at Scopus
  146. L. W. Chamley, A. Bhalla, P. R. Stone et al., “Nuclear localisation of the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) in invasive trophoblasts and an association with recurrent miscarriage,” Placenta, vol. 29, no. 11, pp. 970–975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. A. H. Taylor, M. Finney, P. M. W. Lam, and J. C. Konje, “Modulation of the endocannabinoid system in viable and non-viable first trimester pregnancies by pregnancy-related hormones,” Reproductive Biology and Endocrinology, vol. 9, article 152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  148. C. Aban, G. F. Leguizamon, M. Cella, A. Damiano, A. M. Franchi, and M. G. Farina, “Differential expression of endocannabinoid system in normal and preeclamptic placentas: effects on nitric oxide synthesis,” Placenta, vol. 34, no. 1, pp. 67–74, 2013. View at Google Scholar
  149. M. Khare, A. H. Taylor, J. C. Konje, and S. C. Bell, “Δ9-Tetrahydrocannabinol inhibits cytotrophoblast cell proliferation and modulates gene transcription,” Molecular Human Reproduction, vol. 12, no. 5, pp. 321–333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. H. Blencowe, S. Cousens, M. Z. Oestergaard et al., “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications,” The Lancet, vol. 379, no. 9832, pp. 2162–2172, 2012. View at Google Scholar
  151. H. H. Chang, J. Larson, H. Blencowe et al., “Preventing preterm births: analysis of trends and potential reductions with interventions in 39 countries with very high human development index,” The Lancet, vol. 381, no. 9862, pp. 223–234, 2013. View at Google Scholar
  152. M. G. Gravett and C. E. Rubens, “A framework for strategic investments in research to reduce the global burden of preterm birth,” American Journal of Obstetrics and Gynecology, vol. 207, no. 5, pp. 368–373, 2012. View at Google Scholar
  153. S. M. Dolan, M. V. Hollegaard, M. Merialdi et al., “Synopsis of preterm birth genetic association studies: the preterm birth genetics knowledge base (PTBGene),” Public Health Genomics, vol. 13, no. 7-8, pp. 514–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  154. T. Ding, M. McConaha, K. L. Boyd, K. G. Osteen, and K. L. Bruner-Tran, “Developmental dioxin exposure of either parent is associated with an increased risk of preterm birth in adult mice,” Reproductive Toxicology, vol. 31, no. 3, pp. 351–358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  155. B. Horvath, M. Grasselly, T. Bodecs, I. Boncz, and J. Bodis, “Screening pregnant women for group B streptococcus infection between 30 and 32 weeks of pregnancy in a population at high risk for premature birth,” International Journal of Gynecology & Obstetrics, vol. 122, no. 1, pp. 9–12, 2013. View at Google Scholar
  156. H. Mogami, A. H. Kishore, H. Shi, P. W. Keller, Y. Akgul, and R. A. Word, “Fetal fibronectin signaling induces matrix metalloproteases and cyclooxygenase-2 (COX-2) in amnion cells and preterm birth in mice,” The Journal of Biological Chemistry, vol. 288, no. 3, pp. 1953–1966, 2013. View at Google Scholar
  157. S. R. Sonne, V. K. Bhalla, S. A. Barman et al., “Hyperhomocysteinemia is detrimental to pregnancy in mice and is associated with preterm birth,” Biochimica et Biophysica Acta, vol. 1832, no. 8, pp. 1149–1158, 2013. View at Google Scholar
  158. H. Tan, L. Yi, N. S. Rote, W. W. Hurd, and S. Mesiano, “Progesterone receptor-A and -B have opposite effects on proinflammatory gene expression in human myometrial cells: implications for progesterone actions in human pregnancy and parturition',” The Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 5, pp. E719–E730, 2012. View at Google Scholar
  159. J. M. Dodd, V. Flenady, R. Cincotta, and C. A. Crowther, “Prenatal administration of progesterone for preventing preterm birth,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD004947, 2006. View at Google Scholar · View at Scopus
  160. E. B. Fonseca, E. Celik, M. Parra, M. Singh, and K. H. Nicolaides, “Progesterone and the risk of preterm birth among women with a short cervix,” The New England Journal of Medicine, vol. 357, no. 5, pp. 462–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  161. D. K. Grammatopoulos and E. W. Hillhouse, “Role of corticotropin-releasing hormone in onset of labour,” The Lancet, vol. 354, no. 9189, pp. 1546–1549, 1999. View at Publisher · View at Google Scholar · View at Scopus
  162. D. K. Grammatopoulos, “The role of CRH receptors and their agonists in myometrial contractility and quiescence during pregnancy and labour,” Frontiers in Bioscience, vol. 12, no. 2, pp. 561–571, 2007. View at Publisher · View at Google Scholar · View at Scopus
  163. N. Vrachnis, F. M. Malamas, S. Sifakis, P. Tsikouras, and Z. Iliodromiti, “Immune aspects and myometrial actions of progesterone and CRH in labor,” Clinical and Developmental Immunology, vol. 2012, Article ID 937618, 2012. View at Publisher · View at Google Scholar · View at Scopus
  164. R. W. Steger, A. Y. Silverman, A. Johns, and R. H. Asch, “Interactions of cocaine and Δ9-tetrahydrocannabinol with the hypothalamic-hypophysial axis of the female rat,” Fertility and Sterility, vol. 35, no. 5, pp. 567–572, 1981. View at Google Scholar · View at Scopus
  165. E. Field and L. Tyrey, “Tolerance to the luteinizing hormone and prolactin suppressive effects of delta-9-tetrahydrocannabinol develops during chronic prepubertal treatment of female rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 238, no. 3, pp. 1034–1038, 1986. View at Google Scholar
  166. J. J. Fernández-Ruiz, R. M. Muñoz;, J. Romero, M. A. Villanua, A. Makriyannis, and J. A. Ramos, “Time course of the effects of different cannabimimetics on prolactin and gonadotrophin secretion: Evidence for the presence of CB1 receptors in hypothalamic structures and their involvement in the effects of cannabimimetics,” Biochemical Pharmacology, vol. 53, no. 12, pp. 1919–1927, 1997. View at Publisher · View at Google Scholar · View at Scopus
  167. H. Wang, H. Xie, and S. K. Dey, “Loss of cannabinoid receptor CB1 induces preterm birth,” PLoS ONE, vol. 3, no. 10, Article ID e3320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  168. M. Rinaldi-Carmona, F. Barth, J. Millan et al., “SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor,” Journal of Pharmacology and Experimental Therapeutics, vol. 284, no. 2, pp. 644–650, 1998. View at Google Scholar · View at Scopus
  169. M. D. Mitchell, T. A. Sato, A. Wang, J. A. Keelan, A. P. Ponnampalam, and M. Glass, “Cannabinoids stimulate prostaglandin production by human gestational tissues through a tissue- and CB1-receptor-specific mechanism,” American Journal of Physiology: Endocrinology and Metabolism, vol. 294, no. 2, pp. E352–E356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. W. F. O'Brien, “The role of prostaglandins in labor and delivery,” Clinics in Perinatology, vol. 22, no. 4, pp. 973–984, 1995. View at Google Scholar · View at Scopus
  171. P. M. W. Lam, T. H. Marczylo, M. El-Talatini et al., “Ultra performance liquid chromatography tandem mass spectrometry method for the measurement of anandamide in human plasma,” Analytical Biochemistry, vol. 380, no. 2, pp. 195–201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  172. V. Nallendran, P. Lam, T. Marczylo et al., “The plasma levels of the endocannabinoid, anandamide, increase with the induction of labour,” BJOG, vol. 117, no. 7, pp. 863–869, 2010. View at Publisher · View at Google Scholar · View at Scopus