Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2014 (2014), Article ID 839095, 10 pages
http://dx.doi.org/10.1155/2014/839095
Research Article

Bixin and Norbixin Have Opposite Effects on Glycemia, Lipidemia, and Oxidative Stress in Streptozotocin-Induced Diabetic Rats

1Graduate Program on Pharmacology, Center of Health Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
2Integrated Center for Laboratory Analysis Development (NIDAL), Department of Alimentary Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
3Department of Clinical and Toxicological Analysis, Center of Health Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil

Received 13 September 2013; Revised 3 December 2013; Accepted 9 December 2013; Published 30 January 2014

Academic Editor: Sandeep Singh

Copyright © 2014 Miguel Roehrs et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. International Diabetes Federation, 2012, http://www.idf.org/.
  2. S.-C. Shen, F.-C. Cheng, and N.-J. Wu, “Effect of guava (psidium guajava linn.) leaf soluble solids on glucose metabolism in type 2 diabetic rats,” Phytotherapy Research, vol. 22, no. 11, pp. 1458–1464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. M. Kesavulu, R. Girl, B. Kameswara Rao, and C. H. Apparao, “Lipid peroxidation and antioxidant enzyme levels in type 2 diabetics with microvascular complications,” Diabetes and Metabolism, vol. 26, no. 5, pp. 387–392, 2000. View at Google Scholar · View at Scopus
  4. N. Ahmed, “Alloxan diabetes-induced oxidative stress and impairment of oxidative defense system in rat brain: neuroprotective effects of cichorium intybus,” International Journal of Diabetes and Metabolism, vol. 17, no. 3, pp. 105–109, 2009. View at Google Scholar · View at Scopus
  5. A. Ceriello, “Postprandial hyperglycemia and diabetes complications: Is it time to treat?” Diabetes, vol. 54, no. 1, pp. 1–7, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Jenkins, T. J. Lyons, D. Zheng et al., “Serum lipoproteins in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complications cohort: associations with gender and glycemia,” Diabetes Care, vol. 26, no. 3, pp. 810–818, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. F. K. Ahmad, Z. He, and G. L. King, “Molecular targets of diabetic cardiovascular complications,” Current Drug Targets, vol. 6, no. 4, pp. 487–494, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Basta, A. M. Schmidt, and R. De Caterina, “Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes,” Cardiovascular Research, vol. 63, no. 4, pp. 582–592, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. K. B. Pandey and S. I. Rizvi, “Plant polyphenols as dietary antioxidants in human health and disease,” Oxidative Medicine and Cellular Longevity, vol. 2, no. 5, pp. 270–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Schmatz, L. B. Perreira, N. Stefanello et al., “Effects of resveratrol on biomarkers of oxidative stress and on the activity of delta aminolevulinic acid dehydratase in liver and kidney of streptozotocin-induced diabetic rats,” Biochimie, vol. 94, no. 2, pp. 374–383, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Ashraf, R. A. Khan, and I. Ashraf, “Garlic (Allium sativum) supplementation with standard antidiabetic agent provides better diabetic control in type 2 diabetes patients,” Pakistan Journal of Pharmaceutical Sciences, vol. 24, no. 4, pp. 565–570, 2011. View at Google Scholar · View at Scopus
  13. H. D. Preston and M. D. Rickard, “Extraction and chemistry of annatto,” Food Chemistry, vol. 5, no. 1, pp. 47–56, 1980. View at Google Scholar · View at Scopus
  14. A. Z. Mercadante, A. Steck, and H. Pfander, “Three minor carotenoids from annatto (Bixa orellana) seeds,” Phytochemistry, vol. 52, no. 1, pp. 135–139, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. R. C. Chisté, A. Z. Mercadante, A. Gomes, E. Fernandes, J. L. F. D. C. Lima, and N. Bragagnolo, “In vitro scavenging capacity of annatto seed extracts against reactive oxygen and nitrogen species,” Food Chemistry, vol. 127, no. 2, pp. 419–426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. K. R. M. Russell, E. Y. S. A. Morrison, and D. Ragoobirsingh, “The effect of annatto on insulin binding properties in the dog,” Phytotherapy Research, vol. 19, no. 5, pp. 433–436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. K. R. M. Russel, R. M. Karen, E. Y. Morrison, and M. E. West, “The hypoglycaemic effect of annatto (Bixa orellana),” West Indian Medical Journal, vol. 40, no. 4, pp. 24–27, 1991. View at Google Scholar
  18. A. C. S. Fernandes, C. A. Almeida, F. Albano et al., “Norbixin ingestion did not induce any detectable DNA breakage in liver and kidney but caused a considerable impairment in plasma glucose levels of rats and mice,” Journal of Nutritional Biochemistry, vol. 13, no. 7, pp. 411–420, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Goto, N. Takahashi, S. Hirai, and T. Kawada, “Bixin activates PPARα and improves obesity-induced abnormalities of carbohydrate and lipid metabolism in mice,” Journal of Agricultural and Food Chemistry, vol. 60, no. 48, pp. 11952–11958, 2012. View at Google Scholar
  20. N. Takahashi, T. Goto, A. Taimatsu et al., “Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPARγ activation,” Biochemical and Biophysical Research Communications, vol. 390, no. 4, pp. 1372–1376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Szkudelski, K. Kandulska, and M. Okulicz, “Alloxan in vivo does not only exert deleterious effects on pancreatic B cells,” Physiological Research, vol. 47, no. 5, pp. 343–346, 1998. View at Google Scholar · View at Scopus
  22. W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, “Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge,” Clinical Chemistry, vol. 18, no. 6, pp. 499–502, 1972. View at Google Scholar · View at Scopus
  23. E. Tatsch, G. V. Bochi, R. D. S. Pereira et al., “A simple and inexpensive automated technique for measurement of serum nitrite/nitrate,” Clinical Biochemistry, vol. 44, no. 4, pp. 348–350, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Witko-Sarsat, M. Friedlander, C. Capeillère-Blandin et al., “Advanced oxidation protein products as a novel marker of oxidative stress in uremia,” Kidney International, vol. 49, no. 5, pp. 1304–1313, 1996. View at Google Scholar · View at Scopus
  25. D. E. Paglia and W. N. Valentine, “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” The Journal of Laboratory and Clinical Medicine, vol. 70, no. 1, pp. 158–169, 1967. View at Google Scholar · View at Scopus
  26. H. Aebi, “Catalase in vitro,” Methods in Enzymology, vol. 105, pp. 121–126, 1984. View at Publisher · View at Google Scholar · View at Scopus
  27. H. P. Misra and I. Fridovich, “The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase,” The Journal of Biological Chemistry, vol. 247, no. 10, pp. 3170–3175, 1972. View at Google Scholar · View at Scopus
  28. A. Holmgren and M. Bjornstedt, “Thioredoxin and thioredoxin reductase,” Methods in Enzymology, vol. 252, pp. 199–208, 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Carlberg and B. Mannervik, “Inhibition of glutathione reductase by interaction of 2,4,6-trinitrobenzenesulfonate with the active-site dithiol,” FEBS Letters, vol. 98, no. 2, pp. 263–266, 1979. View at Google Scholar · View at Scopus
  30. S. Lenzen, “The mechanisms of alloxan- and streptozotocin-induced diabetes,” Diabetologia, vol. 51, no. 2, pp. 216–226, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Begum and B. Draznin, “Effect of streptozotocin-induced diabetes on GLUT-4 phosphorylation in rat adipocytes,” The Journal of Clinical Investigation, vol. 90, no. 4, pp. 1254–1262, 1992. View at Google Scholar · View at Scopus
  32. E. Ohkawara, Y. Nohara, Y. Kanno et al., “Fructosamine assay using albumin extracted from serum,” Biological and Pharmaceutical Bulletin, vol. 25, no. 9, pp. 1121–1124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Takahashi, T. Goto, A. Taimatsu et al., “Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPARγ activation,” Biochemical and Biophysical Research Communications, vol. 390, no. 4, pp. 1372–1376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Rocchi, F. Picard, J. Vamecq et al., “A unique PPARγ ligand with potent insulin-sensitizing yet weak adipogenic activity,” Molecular Cell, vol. 8, no. 4, pp. 737–747, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. J.-T. Cheng, C.-C. Huang, I.-M. Liu, T.-F. Tzeng, and J. C. Chih, “Novel mechanism for plasma glucose-lowering action of metformin in streptozotocin-induced diabetic rats,” Diabetes, vol. 55, no. 3, pp. 819–825, 2006. View at Google Scholar · View at Scopus
  36. H. de Paula, M. L. Pedrosa, J. V. R. Júnior, F. K. Haraguchi, R. C. dos Santos, and M. E. Silva, “Effect of an aqueous extract of annatto (Bixa orellana) seeds on lipid profile and biochemical markers of renal and hepatic function in hipercholesterolemic rats,” Brazilian Archives of Biology and Technology, vol. 52, no. 6, pp. 1373–1378, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Lefebvre, G. Chinetti, J.-C. Fruchart, and B. Staels, “Sorting out the roles of PPARα in energy metabolism and vascular homeostasis,” The Journal of Clinical Investigation, vol. 116, no. 3, pp. 571–580, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Takahashi, M.-S. Kang, K. Kuroyanagi et al., “Auraptene, a citrus fruit compound, regulates gene expression as a PPARα agonist in HepG2 hepatocytes,” BioFactors, vol. 33, no. 1, pp. 25–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Kawada, T. Goto, N. Takahashi, and S. Hirai, “Various Terpenoids derived from herbal and dietary plants function as PPAR modulators and regulate carbohydrate and lipid metabolism,” PPAR Research, vol. 48, pp. 39–58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. R. M. Evans, G. D. Barish, and Y.-X. Wang, “PPARs and the complex journey to obesity,” Nature Medicine, vol. 10, no. 4, pp. 355–361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. A. C. Maritim, R. A. Sanders, and J. B. Watkins III, “Diabetes, oxidative stress, and antioxidants: a review,” Journal of Biochemical and Molecular Toxicology, vol. 17, no. 1, pp. 24–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Giacco and M. Brownlee, “Oxidative stress and diabetic complications,” Circulation Research, vol. 107, no. 9, pp. 1058–1070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Mandrup-Poulsen, K. Bendtzen, H. Nielsen, G. Bendixen, and J. Nerup, “Cytokines cause functional and structural damage to isolated islets of Langerhans,” Allergy, vol. 40, no. 6, pp. 424–429, 1985. View at Google Scholar · View at Scopus
  44. J. A. Corbett and M. L. McDaniel, “Does nitric oxide mediate autoimmune destruction of β-cells? Possible therapeutic interventions in IDDM,” Diabetes, vol. 41, no. 8, pp. 897–903, 1992. View at Google Scholar · View at Scopus
  45. R. Gelisgen, H. Genc, R. Kayali et al., “Protein oxidation markers in women with and without gestational diabetes mellitus: a possible relation with paraoxonase activity,” Diabetes Research and Clinical Practice, vol. 94, no. 3, pp. 404–409, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Halliwell and J. M. C. Gutterdige, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, UK, 1999.
  47. A. Ceriello, “New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy,” Diabetes Care, vol. 26, no. 5, pp. 1589–1596, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. R. A. Pinho, M. E. Andrades, M. R. Oliveira et al., “Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise,” Cell Biology International, vol. 30, no. 10, pp. 848–853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Ren and S. H. Chung, “Anti-inflammatory effect of α-linolenic acid and its mode of action through the inhibition of nitric oxide production and inducible nitric oxide synthase gene expression via NF-κB and mitogen-activated protein kinase pathways,” Journal of Agricultural and Food Chemistry, vol. 55, no. 13, pp. 5073–5080, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. J. V. R. Jnior, G. R. Arajo, B. D. C. Pádua et al., “Annatto extract and β-carotene enhances antioxidant status and regulate gene expression in neutrophils of diabetic rats,” Free Radical Research, vol. 46, no. 3, pp. 329–338, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. A. R. P. L. Bautista, E. L. T. Moreira, M. S. Batista, M. S. Miranda, and I. C. S. Gomes, “Subacute toxicity assessment of annatto in rat,” Food and Chemical Toxicology, vol. 42, no. 4, pp. 625–629, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. C. J. Bailey, M. R. C. Path, and R. C. Turner, “Metformin,” The New England Journal of Medicine, vol. 334, no. 9, pp. 574–579, 1996. View at Google Scholar · View at Scopus