Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2014, Article ID 902186, 8 pages
http://dx.doi.org/10.1155/2014/902186
Research Article

Irisin Enhances Osteoblast Differentiation In Vitro

1Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy
2Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
3Department of Experimental and Clinical Medicine, Center of Obesity, United Hospitals—University of Ancona, 60020 Ancona, Italy

Received 19 December 2013; Accepted 13 January 2014; Published 4 March 2014

Academic Editor: Nicola Napoli

Copyright © 2014 Graziana Colaianni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Dunstan, “Diabetes: exercise and T2DM-move muscles more often!,” Nature Reviews Endocrinology, vol. 7, no. 4, pp. 189–190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Crepaldi and S. Maggi, “Sarcopenia and osteoporosis: a hazardous duet,” Journal of Endocrinological Investigation, vol. 28, no. 10, pp. 66–68, 2005. View at Google Scholar · View at Scopus
  3. P. Boström, J. Wu, M. P. Jedrychowski et al., “A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis,” Nature, vol. 481, no. 7382, pp. 463–468, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. A. D. LeBlanc, E. R. Spector, H. J. Evans, and J. D. Sibonga, “Skeletal responses to space flight and the bed rest analog: a review,” Journal of Musculoskeletal Neuronal Interactions, vol. 7, no. 1, pp. 33–47, 2007. View at Google Scholar · View at Scopus
  5. D. Karasik and D. P. Kiel, “Evidence for pleiotropic factors in genetics of the musculoskeletal system,” Bone, vol. 46, no. 5, pp. 1226–1237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. H. Jones, J. D. Priest, and W. C. Hayes, “Humeral hypertrophy in response to exercise,” Journal of Bone and Joint Surgery A, vol. 59, no. 2, pp. 204–208, 1977. View at Google Scholar · View at Scopus
  7. J. I. Rodriguez, J. Palacios, A. Garcia-Alix, I. Pastor, and R. Paniagua, “Effects of immobilization on fetal bone development. A morphometric study in newborns with congenital neuromuscular diseases with intrauterine onset,” Calcified Tissue International, vol. 43, no. 6, pp. 335–339, 1988. View at Google Scholar · View at Scopus
  8. Z. A. Ralis, H. M. Ralis, and M. Randall, “Changes in shape, ossification and quality of bones in children with spina bifida,” Developmental Medicine and Child Neurology, vol. 18, no. 6, pp. 29–41, 1976. View at Google Scholar · View at Scopus
  9. A. G. Robling and C. H. Turner, “Mechanical signaling for bone modeling and remodeling,” Critical Reviews in Eukaryotic Gene Expression, vol. 19, no. 4, pp. 319–338, 2009. View at Google Scholar · View at Scopus
  10. Y. Han, S. C. Cowin, M. B. Schaffler, and S. Weinbaum, “Mechanotransduction and strain amplification in osteocyte cell processes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 47, pp. 16689–16694, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Burguera, L. C. Hofbauer, T. Thomas et al., “Leptin reduces ovariectomy-induced bone loss in rats,” Endocrinology, vol. 142, no. 8, pp. 3546–3553, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Kajimura, H. W. Lee, K. J. Riley et al., “Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1,” Cell Metabolism, vol. 17, no. 6, pp. 901–915, 2013. View at Google Scholar
  13. B. Cannon and J. Nedergaard, “Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans),” International Journal of Obesity, vol. 34, no. 1, pp. S7–S16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. N. K. Lee, H. Sowa, E. Hinoi et al., “Endocrine regulation of energy metabolism by the skeleton,” Cell, vol. 130, no. 3, pp. 456–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Ferrer-Martínez, P. Ruiz-Lozano, and K. R. Chien, “Mouse PeP: a novel peroxisomal protein linked to myoblast differentiation and development,” Developmental Dynamics, vol. 224, no. 2, pp. 154–167, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. B. K. Pedersen, T. C. Akerström, A. R. Nielsen, and C. P. Fischer, “Role of myokines in exercise and metabolism,” Journal of Applied Physiology, vol. 103, no. 3, pp. 1093–1098, 2007. View at Google Scholar
  17. M. J. Tisdale, “Mechanisms of cancer cachexia,” Physiological Reviews, vol. 89, no. 2, pp. 381–410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. L. I. Filippin, V. N. Teixeira, P. R. Viacava, P. S. Lora, L. L. Xavier, and R. M. Xavier, “Temporal development of muscle atrophy in murine model of arthritis is related to disease severity,” Journal of Cachexia, Sarcopenia and Muscle, vol. 4, no. 3, pp. 231–238, 2013. View at Google Scholar
  19. J. A. Timmons, K. Baar, P. K. Davidsen, and P. J. Atherton, “Is irisin a human exercise gene?” Nature, vol. 488, pp. E9–E10, 2012. View at Google Scholar
  20. J. Y. Huh, G. Panagiotou, V. Mougios et al., “FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise,” Metabolism, vol. 61, no. 12, pp. 1725–1738, 2012. View at Google Scholar
  21. J. R. Speakman and C. Selman, “Physical activity and resting metabolic rate,” Proceedings of the Nutrition Society, vol. 62, no. 3, pp. 621–634, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Frontini and S. Cinti, “Distribution and development of brown adipocytes in the murine and human adipose organ,” Cell Metabolism, vol. 11, no. 4, pp. 253–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. M. Cypess, S. Lehman, G. Williams et al., “Identification and importance of brown adipose tissue in adult humans,” The New England Journal of Medicine, vol. 360, no. 15, pp. 1509–1517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. W. D. Van Marken Lichtenbelt, J. W. Vanhommerig, N. M. Smulders et al., “Cold-activated brown adipose tissue in healthy men,” The New England Journal of Medicine, vol. 360, no. 15, pp. 1500–1508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. K. A. Virtanen, M. E. Lidell, J. Orava et al., “Functional brown adipose tissue in healthy adults,” The New England Journal of Medicine, vol. 360, no. 15, pp. 1518–1525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Saito, Y. Okamatsu-Ogura, M. Matsushita et al., “High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity,” Diabetes, vol. 58, no. 7, pp. 1526–1531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. Bredella, P. K. Fazeli, L. M. Freedman et al., “Young women with cold-activated brown adipose tissue have higher bone mineral density and lower Pref-1 than women without brown adipose tissue: a study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women,” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 4, pp. E584–E590, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Rahman, Y. Lu, P. J. Czernik, C. J. Rosen, S. Enerback, and B. Lecka-Czernik, “Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton,” Endocrinology, vol. 154, no. 8, pp. 2687–2701, 2013. View at Google Scholar
  29. K. J. Motyl, K. A. Bishop, V. E. DeMambro et al., “Altered thermogenesis and impaired bone remodeling in Misty mice,” Journal of Bone and Mineral Research, vol. 28, no. 9, pp. 1885–1897, 2013. View at Google Scholar
  30. M. Kawai, F. J. de Paula, and C. J. Rosen, “New insights into osteoporosis: the bone-fat connection,” Journal of Internal Medicine, vol. 272, no. 4, pp. 317–329, 2012. View at Google Scholar
  31. S. L. Dun, R. M. Lyu, Y. H. Chen, J. K. Chang, J. J. Luo, and N. J. Dun, “Irisin-immunoreactivity in neural and non-neural cells of the rodent,” Neuroscience, vol. 240, pp. 155–162, 2013. View at Google Scholar
  32. M. S. Hashemi, K. Ghaedi, A. Salamian et al., “Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells,” Neuroscience, vol. 231, pp. 296–304, 2013. View at Google Scholar
  33. M. P. Mattson, “Energy intake and exercise as determinants of brain health and vulnerability to injury and disease,” Cell Metabolism, vol. 16, no. 6, pp. 706–722, 2012. View at Google Scholar
  34. K. I. Erickson, A. M. Weinstein, and O. L. Lopez, “Physical activity, brain plasticity, and Alzheimer's disease,” Archives of Medical Research, vol. 43, no. 8, pp. 615–621, 2012. View at Google Scholar