Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2014, Article ID 921954, 16 pages
http://dx.doi.org/10.1155/2014/921954
Research Article

The Importance of the Prenyl Group in the Activities of Osthole in Enhancing Bone Formation and Inhibiting Bone Resorption In Vitro

1Key Laboratory for Space Bioscience and Biotechnology, College of Life Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
2Collaborative Innovation Center for Chinese Medicine in Qin Mountains, Xi’an, Shaanxi 710032, China
3Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia

Received 25 March 2014; Revised 12 June 2014; Accepted 20 June 2014; Published 24 July 2014

Academic Editor: Iacopo Chiodini

Copyright © 2014 Yuan-Kun Zhai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Kanis, “Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report,” Osteoporosis International, vol. 4, no. 6, pp. 368–381, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Curran, M. Maravic, P. Kiefer, V. Tochon, and P. Fardellone, “Epidemiology of osteoporosis-related fractures in France: a literature review,” Joint Bone Spine, vol. 77, no. 6, pp. 546–551, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Q. Wang, J. L. Li, Y. L. Sun et al., “Chinese herbal medicine for osteoporosis: a systematic review of randomized controlled trails,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 356260, 11 pages, 2013. View at Publisher · View at Google Scholar
  4. Y. Mouri, M. Yoshida, S. Nakano et al., “A case of osteonecrosis of the jaw in a breast cancer patient with bone metastases receiving long-term treatment with bisphosphonates,” Breast Cancer, vol. 16, no. 2, pp. 147–150, 2009. View at Publisher · View at Google Scholar
  5. S. Khosla, J. J. Westendorf, and M. J. Oursler, “Building bone to reverse osteoporosis and repair fractures,” Journal of Clinical Investigation, vol. 118, no. 2, pp. 421–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Wei, M. Liu, Y. Chen, and D. Chen, “Systematic review of soy isoflavone supplements on osteoporosis in women,” Asian Pacific Journal of Tropical Medicine, vol. 5, no. 3, pp. 243–248, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. K. Zhai, X. Guo, Y. L. Pan, Y. B. Niu C, and Q. B. Mei, “A systematic review of the efficacy and pharmacological profile of Herba Epimedii in osteoporosis therapy,” Pharmazie, vol. 68, no. 9, pp. 713–722, 2013. View at Google Scholar
  8. J. Li and W. Chan, “Investigation of the biotransformation of osthole by liquid chromatography/tandem mass spectrometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 74, pp. 156–161, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Zhang, J. Xue, H. Wang, Y. Zhang, and M. Xie, “Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress,” Phytotherapy Research, vol. 25, no. 5, pp. 638–643, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Ding, S. Wei, Y. Song et al., “Osthole exhibits anti-cancer property in rat glioma cells through inhibiting PI3K/Akt and MAPK signaling pathways,” Cellular Physiology and Biochemistry, vol. 32, no. 6, pp. 1751–1760, 2013. View at Google Scholar
  11. F. Li, Q. Gong, L. Wang, and J. Shi, “Osthole attenuates focal inflammatory reaction following permanent middle cerebral artery occlusion in rats,” Biological and Pharmaceutical Bulletin, vol. 35, no. 10, pp. 1686–1690, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. H. J. Liang, F. M. Suk, C. K. Wang et al., “Osthole, a potential antidiabetic agent, alleviates hyperglycemia in db/db mice,” Chemico-Biological Interactions, vol. 181, no. 3, pp. 309–315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Chao, J. Zhou, T. Chen et al., “Neuroprotective effect of osthole against acute ischemic stroke on middle cerebral ischemia occlusion in rats,” Brain Research, vol. 1363, pp. 206–211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Bao, M. Xie, and L. Zhu, “Treatment of osthol on osteoporosis in ovariectomized rats,” Chinese Pharmacological Bulletin, vol. 27, no. 4, pp. 591–592, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. L. G. Ming, J. Zhou, G. Z. Cheng, H. P. Ma, and K. M. Chen, “Osthol, a coumarin isolated from common cnidium fruit, enhances the differentiation and maturation of osteoblasts in vitro,” Pharmacology, vol. 88, no. 1-2, pp. 33–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. L. G. Ming, M. G. Wang, K. M. Chen, J. Zhou, G. Q. Han, and R. Q. Zhu, “Effect of osthol on apoptosis and bone resorption of osteoclasts cultured in vitro,” Acta Pharmaceutica Sinica, vol. 47, no. 2, pp. 174–179, 2012. View at Google Scholar · View at Scopus
  17. Y. Zhang, X. Li, X. Yao, and M. Wong, “Osteogenic activities of genistein derivatives were influenced by the presence of prenyl group at ring A,” Archives of Pharmacal Research, vol. 31, no. 12, pp. 1534–1539, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. F. A. Bhat, G. Ramajayam, S. Parameswari et al., “Di 2-ethyl hexyl phthalate affects differentiation and matrix mineralization of rat calvarial osteoblasts -in vitro,” Toxicology in Vitro, vol. 27, no. 1, pp. 250–256, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Hino, H. Matsuo, and K. Kangawa, “Bone morphogenetic protein-3b (BMP-3b) gene expression is correlated with differentiation in rat calvarial osteoblasts,” Biochemical and Biophysical Research Communications, vol. 256, no. 2, pp. 419–424, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. J. David, L. Neff, Y. Chen, M. Rincon, W. C. Horne, and R. Baron, “A new method to isolate large numbers of rabbit osteoclasts and osteoclast-like cells: application to the characterization of serum response element binding proteins during osteoclast differentiation,” Journal of Bone and Mineral Research, vol. 13, no. 11, pp. 1730–1738, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. S. I. Deliloglu-Gurhan, H. S. Vatansever, F. Ozdal-Kurt, and I. Tuglu, “Characterization of osteoblasts derived from bone marrow stromal cells in a modified cell culture system,” Acta Histochemica, vol. 108, no. 1, pp. 49–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Fu, X. Liang, Y. Chen, L. Tang, Q. Zhang, and Q. Dong, “Oxidative stress as a component of chromium-induced cytotoxicity in rat calvarial osteoblasts,” Cell Biology and Toxicology, vol. 24, no. 3, pp. 201–212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. P. Ma, L. G. Ming, B. F. Ge et al., “Icariin is more potent than genistein in promoting osteoblast differentiation and mineralization in vitro,” Journal of Cellular Biochemistry, vol. 112, no. 3, pp. 916–923, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Giustina, G. Mazziotti, and E. Canalis, “Growth hormone, insulin-like growth factors, and the skeleton,” Endocrine Reviews, vol. 29, no. 5, pp. 535–559, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Xian, X. Wu, L. Pang et al., “Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells,” Nature Medicine, vol. 18, no. 7, pp. 1095–1101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Komori, “Signaling networks in RUNX2-dependent bone development,” Journal of Cellular Biochemistry, vol. 112, no. 3, pp. 750–755, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Zhang, “Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx,” Journal of Orthopaedic Surgery and Research, vol. 5, no. 1, article 37, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. W. Lee, A. Iwahashi, S. Hasegawa et al., “Coptisine inhibits RANKL-induced NF-κB phosphorylation in osteoclast precursors and suppresses function through the regulation of RANKL and OPG gene expression in osteoblastic cells,” Journal of Natural Medicines, vol. 66, no. 1, pp. 8–16, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. M. C. Kühn, H. S. Willenberg, M. Schott et al., “Adipocyte-secreted factors increase osteoblast proliferation and the OPG/RANKL ratio to influence osteoclast formation,” Molecular and Cellular Endocrinology, vol. 349, no. 2, pp. 180–188, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. O. Kurt-Sirin, H. Yilmaz-Aydogan, M. Uyar, M. F. Seyhan, T. Isbir, and A. Can, “Combined effects of type I (COL1A1) Sp1 polymorphism and osteoporosis risk factors on mineral density in Turkish postmenopausal women,” Gene, vol. 540, no. 2, pp. 226–231, 2014. View at Publisher · View at Google Scholar
  31. J. S. Moon, S. H. Oh, Y. W. Jeong et al., “Relaxin augments BMP 2-induced osteoblast differentiation and bone formation,” Journal of Bone and Mineral Research, vol. 29, no. 7, pp. 1586–1596, 2014. View at Publisher · View at Google Scholar
  32. X. Duan, H. Xu, Y. Wang, H. Wang, G. Li, and L. Jing, “Expression of core-binding factor α1 and osteocalcin influoride-treated fibroblasts and osteoblasts,” Journal of Trace Elements in Medicine and Biology, vol. 28, no. 3, pp. 278–283, 2014. View at Publisher · View at Google Scholar
  33. Q. Chen, P. Shou, L. Zhang et al., “An osteopontin-integrin interaction plays a critical role in directing adipogenesis and mesenchymal stem cells,” Stem Cells, vol. 32, no. 2, pp. 327–337, 2014. View at Publisher · View at Google Scholar
  34. K. Harada, H. Itoh, Y. Kawazoe et al., “Polyphosphate-mediated inhibition of acid phosphatase suppression of bone resorption of osteoclasts,” PLoS ONE, vol. 8, no. 11, Article ID e78612, 2013. View at Google Scholar
  35. R. Baron and E. Hesse, “Update on bone anabolics in osteoporosis treatment: rationale, current status, and perspectives,” The Journal of Clinical Endocrinology & Metabolism, vol. 97, no. 2, pp. 311–325, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Hümpel, P. Isaksson, O. Schaefer et al., “Tissue specificity of 8-prenylnaringenin: protection from ovariectomy induced bone loss with minimal trophic effects on the uterus,” Journal of Steroid Biochemistry and Molecular Biology, vol. 97, no. 3, pp. 299–305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. K. E. Effenberger, S. A. Johnsen, D. G. Monroe, T. C. Spelsberg, and J. J. Westendorf, “Regulation of osteoblastic phenotype and gene expression by hop-derived phytoestrogens,” Journal of Steroid Biochemistry and Molecular Biology, vol. 96, no. 5, pp. 387–399, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Rad, M. Hümpel, O. Schaefer et al., “Pharmacokinetics and systemic endocrine effects of the phyto-oestrogen 8-prenylnaringenin after single oral doses to postmenopausal women,” British Journal of Clinical Pharmacology, vol. 62, no. 3, pp. 288–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Kretzschmar, O. Zierau, J. Wober, S. Tischer, P. Metz, and G. Vollmer, “Prenylation has a compound specific effect on the estrogenicity of naringenin and genistein,” Journal of Steroid Biochemistry and Molecular Biology, vol. 118, no. 1-2, pp. 1–6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. X. X. Li, I. Hara, and T. Matsumiya, “Effects of osthole on postmenopausal osteoporosis using ovariectomized rats; comparison to the effects of estradiol,” Biological and Pharmaceutical Bulletin, vol. 25, no. 6, pp. 738–742, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Meng, Z. Xiong, Y. Sun, and F. Li, “Coumarins from Cnidium monnieri (L.) and their proliferation stimulating activity on osteoblast-like UMR106 cells,” Pharmazie, vol. 59, no. 8, pp. 643–645, 2004. View at Google Scholar · View at Scopus
  42. L. G. Ming, X. Lv, X. N. Ma et al., “The prenyl group contributes to activities of phytoestrogen 8-prenynaringenin in enhancing bone formation and inhibiting bone resorption in vitro,” Endocrinology, vol. 154, no. 3, pp. 1202–1214, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Tang, W. Hou, Q. Zhou et al., “Osthole stimulates osteoblast differentiation and bone formation by activation of β-catenin-BMP signaling,” Journal of Bone and Mineral Research, vol. 25, no. 6, pp. 1234–1245, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. P.-L. Kuo, Y.-L. Hsu, C.-H. Chang, and J.-K. Chang, “Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells,” Journal of Pharmacology and Experimental Therapeutics, vol. 314, no. 3, pp. 1290–1299, 2005. View at Publisher · View at Google Scholar · View at Scopus