Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2015 (2015), Article ID 565760, 5 pages
http://dx.doi.org/10.1155/2015/565760
Review Article

Eosinophils Reduce Chronic Inflammation in Adipose Tissue by Secreting Th2 Cytokines and Promoting M2 Macrophages Polarization

Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China

Received 24 August 2015; Accepted 4 November 2015

Academic Editor: Darío A. Castroviejo

Copyright © 2015 Yi Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. E. Kahn, R. L. Hull, and K. M. Utzschneider, “Mechanisms linking obesity to insulin resistance and type 2 diabetes,” Nature, vol. 444, no. 7121, pp. 840–846, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. H. C. Masuoka and N. Chalasani, “Nonalcoholic fatty liver disease: an emerging threat to obese and diabetic individuals,” Annals of the New York Academy of Sciences, vol. 1281, no. 1, pp. 106–122, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. K. M. Flegal, D. Carroll, B. K. Kit, and C. L. Ogden, “Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010,” The Journal of the American Medical Association, vol. 307, no. 5, pp. 491–497, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Rask-Madsen and C. R. Kahn, “Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 9, pp. 2052–2059, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Y. Huh, Y. J. Park, M. Ham, and J. B. Kim, “Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity,” Molecules and Cells, vol. 37, no. 5, pp. 365–371, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. R. R. Rao, J. Z. Long, J. P. White et al., “Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis,” Cell, vol. 157, no. 6, pp. 1279–1291, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Shapiro, A. Lutaty, and A. Ariel, “Macrophages, meta-inflammation, and immuno-metabolism,” TheScientificWorldJOURNAL, vol. 11, pp. 2509–2529, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Szanto, B. L. Balint, Z. S. Nagy et al., “STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells,” Immunity, vol. 33, no. 5, pp. 699–712, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. D. L. Morris, K. Singer, and C. N. Lumeng, “Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 14, no. 4, pp. 341–346, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Chawla, “Control of macrophage activation and function by PPARs,” Circulation Research, vol. 106, no. 10, pp. 1559–1569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. I. Odegaard and A. Chawla, “Alternative macrophage activation and metabolism,” Annual Review of Pathology: Mechanisms of Disease, vol. 6, pp. 275–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. T.-D. Kanneganti and V. D. Dixit, “Immunological complications of obesity,” Nature Immunology, vol. 13, no. 8, pp. 707–712, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Wu, A. B. Molofsky, H.-E. Liang et al., “Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis,” Science, vol. 332, no. 6026, pp. 243–247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. D. Lee and P. Tontonoz, “Eosinophils in fat: pink is the new brown,” Cell, vol. 157, no. 6, pp. 1249–1250, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Chondronikola, E. Volpi, E. Børsheim et al., “Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans,” Diabetes, vol. 63, no. 12, pp. 4089–4099, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. M. J. Betz and S. Enerbäck, “Human brown adipose tissue: what we have learned so far,” Diabetes, vol. 64, no. 7, pp. 2352–2360, 2015. View at Google Scholar
  18. E. D. Rosen and B. M. Spiegelman, “What we talk about when we talk about fat,” Cell, vol. 156, no. 1-2, pp. 20–44, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. R. M. Maizels and J. E. Allen, “Eosinophils forestall obesity,” Science, vol. 332, no. 6026, pp. 186–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. K. D. Nguyen, Y. Qiu, X. Cui et al., “Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis,” Nature, vol. 480, no. 7375, pp. 104–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. Q.-Y. Zhou, C. J. Quaife, and R. D. Palmiter, “Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development,” Nature, vol. 374, no. 6523, pp. 640–643, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. Flierl, D. Rittirsch, B. A. Nadeau et al., “Phagocyte-derived catecholamines enhance acute inflammatory injury,” Nature, vol. 449, no. 7163, pp. 721–725, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993. View at Publisher · View at Google Scholar · View at Scopus
  24. H. L. Kammoun, M. J. Kraakman, and M. A. Febbraio, “Adipose tissue inflammation in glucose metabolism,” Reviews in Endocrine and Metabolic Disorders, vol. 15, no. 1, pp. 31–44, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. J. P. Edwards, X. Zhang, K. A. Frauwirth, and D. M. Mosser, “Biochemical and functional characterization of three activated macrophage populations,” Journal of Leukocyte Biology, vol. 80, no. 6, pp. 1298–1307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C. F. Anderson and D. M. Mosser, “Cutting edge: biasing immune responses by directing antigen to macrophage Fcγ receptors,” The Journal of Immunology, vol. 168, no. 8, pp. 3697–3701, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati, “The chemokine system in diverse forms of macrophage activation and polarization,” Trends in Immunology, vol. 25, no. 12, pp. 677–686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. K. A. Harford, C. M. Reynolds, F. C. McGillicuddy, and H. M. Roche, “Fats, inflammation and insulin resistance: insights to the role of macrophage and T-cell accumulation in adipose tissue,” Proceedings of the Nutrition Society, vol. 70, no. 4, pp. 408–417, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. A. W. Mould, K. I. Matthaei, I. G. Young, and P. S. Foster, “Relationship between interleukin-5 and eotaxin in regulating blood and tissue eosinophilia in mice,” The Journal of Clinical Investigation, vol. 99, no. 5, pp. 1064–1071, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. A. B. Molofsky, J. C. Nussbaum, H.-E. Liang et al., “Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages,” The Journal of Experimental Medicine, vol. 210, no. 3, pp. 535–549, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. J. R. Brestoff, B. S. Kim, S. A. Saenz et al., “Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity,” Nature, vol. 519, no. 7542, pp. 242–246, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. M. A. Exley, L. Hand, D. O'Shea, and L. Lynch, “Interplay between the immune system and adipose tissue in obesity,” Journal of Endocrinology, vol. 223, no. 2, pp. R41–R48, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Chen, Y. Wu, and L. Wang, “Fat-resident Tregs: an emerging guard protecting from obesity-associated metabolic disorders,” Obesity Reviews, vol. 14, no. 7, pp. 568–578, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. B.-C. Lee and J. Lee, “Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1842, no. 3, pp. 446–462, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Mathis, “Immunological goings-on in visceral adipose tissue,” Cell Metabolism, vol. 17, no. 6, pp. 851–859, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Qiu, K. D. Nguyen, J. I. Odegaard et al., “Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat,” Cell, vol. 157, no. 6, pp. 1292–1308, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. J. D. Berndt, “The IL-4 brown out,” Science Signaling, vol. 7, no. 331, Article ID ec170, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. J. R. Jørgensen, L. Fjord-Larsen, L. U. Wahlberg et al., “Therapeutic use of a growth factor, METRNL,” US Patent, 2012.