Table of Contents Author Guidelines Submit a Manuscript
Corrigendum

A corrigendum for this article has been published. To view the corrigendum, please click here.

International Journal of Endocrinology
Volume 2016, Article ID 5872423, 10 pages
http://dx.doi.org/10.1155/2016/5872423
Research Article

Pharmacogenetics of Risperidone and Cardiovascular Risk in Children and Adolescents

1Department of Psychiatry, School of Medical Sciences (FCM), State University of Campinas (Unicamp), 13083-887 Campinas, SP, Brazil
2Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), Unicamp, 13083-875 Campinas, SP, Brazil
3Growth and Development Laboratory, Center for Investigation in Pediatrics (CIPED), FCM-Unicamp, 13083-887 Campinas, SP, Brazil
4Department of Pediatrics, Pediatric Endocrinology Unit, FCM-Unicamp, 13083-887 Campinas, SP, Brazil

Received 26 August 2015; Revised 11 December 2015; Accepted 20 December 2015

Academic Editor: Javier Salvador

Copyright © 2016 Amilton Dos Santos-Júnior et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Cabaleiro, D. Ochoa, R. López-Rodríguez et al., “Effect of polymorphisms on the pharmacokinetics, pharmacodynamics, and safety of risperidone in healthy volunteers,” Human Psychopharmacology, vol. 29, no. 5, pp. 459–469, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Stahl, Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Applications, Cambridge University Press, New York, NY, USA, 3rd edition, 2008.
  3. FDA, Drug Approved for Two Psychiatric Conditions in Children and Adolescents, FDA, Silver Spring, Md, USA, 2007.
  4. C. McKinney and K. Renk, “Atypical antipsychotic medications in the management of disruptive behaviors in children: safety guidelines and recommendations,” Clinical Psychology Review, vol. 31, no. 3, pp. 465–471, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. T. A. P. Lett, T. J. M. Wallace, N. I. Chowdhury, A. K. Tiwari, J. L. Kennedy, and D. J. Müller, “Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications,” Molecular Psychiatry, vol. 17, no. 3, pp. 242–266, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. G. P. Reynolds, “Pharmacogenetic aspects of antipsychotic drug-induced weight gain—a critical review,” Clinical Psychopharmacology and Neuroscience, vol. 10, no. 2, pp. 71–77, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. P. J. Hoekstra, P. W. Troost, B. E. Lahuis et al., “Risperidone-induced weight gain in referred children with autism spectrum disorders is associated with a common polymorphism in the 5-hydroxytryptamine 2C receptor gene,” Journal of Child and Adolescent Psychopharmacology, vol. 20, no. 6, pp. 473–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. D. J. Müller, C. C. Zai, M. Sicard et al., “Systematic analysis of dopamine receptor genes (DRD1-DRD5) in antipsychotic-induced weight gain,” Pharmacogenomics Journal, vol. 12, no. 2, pp. 156–164, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. G.-J. Wang, N. D. Volkow, J. Logan et al., “Brain dopamine and obesity,” The Lancet, vol. 357, no. 9253, pp. 354–357, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Perez-Iglesias, I. Mata, J. A. Amado et al., “Effect of FTO, SH2B1, LEP, and LEPR polymorphisms on weight gain associated with antipsychotic treatment,” Journal of Clinical Psychopharmacology, vol. 30, no. 6, pp. 661–666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Grunberger, A. Garber, and J. Mechanick, “Obesity management: applying clinical trial data to clinical care,” Endocrine Practice, vol. 20, supplement 2, pp. 6–19, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. J. F. List and J. F. Habener, “Defective melanocortin 4 receptors in hyperphagia and morbid obesity,” The New England Journal of Medicine, vol. 348, no. 12, pp. 1160–1163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. S. D. S. Maggo, R. L. Savage, and M. A. Kennedy, “Impact of new genomic technologies on understanding adverse drug reactions,” Clinical Pharmacokinetics, pp. 1–18, 2015. View at Publisher · View at Google Scholar
  14. C. T. Correia, J. P. Almeida, P. E. Santos et al., “Pharmacogenetics of risperidone therapy in autism: association analysis of eight candidate genes with drug efficacy and adverse drug reactions,” Pharmacogenomics Journal, vol. 10, no. 5, pp. 418–430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Tanner and R. Whitehouse, Assessment of Skeletal Maturity and Prediction of Adult Height (TW2 Method), Academic, London, UK, 1975.
  16. WHO—World Health Organization, Growth Reference 5–19 Years, 2007, http://www.who.int/growthref/who2007_bmi_for_age/en/index.html.
  17. A. Must and S. E. Anderson, “Body mass index in children and adolescents: considerations for population-based applications,” International Journal of Obesity, vol. 30, no. 4, pp. 590–594, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. R. Fernández, D. T. Redden, A. Pietrobelli, and D. B. Allison, “Waist circumference percentiles in nationally representative samples of African-American, European-American, and Mexican-American children and adolescents,” Journal of Pediatrics, vol. 145, no. 4, pp. 439–444, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents, “The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents,” Pediatrics, vol. 114, no. 2, supplement 4, pp. 555–576, 2004. View at Google Scholar
  20. C. Aradillas-García, M. Rodríguez-Morán, M. E. Garay-Sevilla, J. M. Malacara, R. A. Rascon-Pacheco, and F. Guerrero-Romero, “Distribution of the homeostasis model assessment of insulin resistance in Mexican children and adolescents,” European Journal of Endocrinology, vol. 166, no. 2, pp. 301–306, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. De Jesus, “Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report,” Pediatrics, vol. 128, supplement 5, pp. S213–S256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. World Health Organization, Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus, World Health Organization, Geneva, Switzerland, 1999.
  23. IDF International Diabetes Federation, “The definition of metabolic syndrome in children,” http://www.idf.org/webdata/docs/Mets_definition_children.pdf.
  24. S. D. J. Pena, L. Bastos-Rodrigues, J. R. Pimenta, and S. P. Bydlowski, “DNA tests probe the genomic ancestry of Brazilians,” Brazilian Journal of Medical and Biological Research, vol. 42, no. 10, pp. 870–876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. Ministério da Educação and Instituto Nacional de Estudos e Pesquisas Educacionais, Mostre Sua Raça, Declare Sua Cor, Diretoria de Estatísticas da Educação Básica, Brasília, Brazil, 2005.
  26. S. McCarthy, S. Mottagui-Tabar, Y. Mizuno et al., “Complex HTR2C linkage disequilibrium and promoter associations with body mass index and serum leptin,” Human Genetics, vol. 117, no. 6, pp. 545–557, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. C. J. Willer, E. K. Speliotes, R. J. F. Loos et al., “Six new loci associated with body mass index highlight a neuronal influence on body weight regulation,” Nature Genetics, vol. 41, no. 1, pp. 25–34, 2009. View at Google Scholar
  28. M. Botros and K. A. Sikaris, “The de ritis ratio: the test of time,” Clinical Biochemist Reviews, vol. 34, no. 3, pp. 117–130, 2013. View at Google Scholar · View at Scopus
  29. L. A. Templeman, G. P. Reynolds, B. Arranz, and L. San, “Polymorphisms of the 5-HT2C receptor and leptin genes are associated with antipsychotic drug-induced weight gain in Caucasian subjects with a first-episode psychosis,” Pharmacogenetics and Genomics, vol. 15, no. 4, pp. 195–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Fernández, E. Carrizo, V. Fernández et al., “Polymorphisms of the LEP- and LEPR genes, metabolic profile after prolonged clozapine administration and response to the antidiabetic metformin,” Schizophrenia Research, vol. 121, no. 1–3, pp. 213–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Wu, J. Zhao, P. Shao, J. Ou, and M. Chang, “Genetic predictors of antipsychotic-induced weight gain: a case-matched multi-gene study,” Zhong Nan Da Xue Xue Bao Yi Xue Ban, vol. 36, no. 8, pp. 720–723, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Shen, W. Ge, J. Zhang, H. J. Zhu, and Y. Fang, “Leptin −2548g/a gene polymorphism in association with antipsychotic-induced weight gain: a meta-analysis study,” Psychiatria Danubina, vol. 26, no. 2, pp. 145–151, 2014. View at Google Scholar
  33. U.S. Food and Drug Administration, “Table of pharmacogenomic biomarkers in drug labels,” http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.Htm.
  34. K. I. Melkersson, M. G. Scordo, A. Gunes, and M.-L. Dahl, “Impact of CYP1A2 and CYP2D6 polymorphisms on drug metabolism and on insulin and lipid elevations and insulin resistance in clozapine-treated patients,” Journal of Clinical Psychiatry, vol. 68, no. 5, pp. 697–704, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H.-Y. Lane, Y.-C. Liu, C.-L. Huang et al., “Risperidone-related weight gain: genetic and nongenetic predictors,” Journal of Clinical Psychopharmacology, vol. 26, no. 2, pp. 128–134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. T. J. Wallace, C. C. Zai, E. J. Brandl, and D. J. Müller, “Role of 5-HT2C receptor gene variants in antipsychotic-induced weight gain,” Pharmacogenomics and Personalized Medicine, vol. 4, pp. 83–93, 2011. View at Publisher · View at Google Scholar
  37. J.-P. Zhang and A. K. Malhotra, “Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction,” Expert Opinion on Drug Metabolism and Toxicology, vol. 7, no. 1, pp. 9–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. T. B. Meira, F. L. de Moraes, and M. T. S. Böhme, “Relações entre leptina, puberdade e exercício no sexo feminino,” Revista Brasileira de Medicina do Esporte, vol. 15, no. 4, pp. 306–310, 2009. View at Publisher · View at Google Scholar
  39. IBGE—Instituto Brasileiro de Geografia e Estatística, “Pesquisa de orçamentos familiares 2008-2009,” in Antropometria e Estado Nutricional de Crianças, Adolescentes e Adultos no Brasil, p. 130, Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, Brazil, 2010. View at Google Scholar
  40. M. M. Finucane, G. A. Stevens, M. J. Cowan et al., “National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants,” The Lancet, vol. 377, no. 9765, pp. 557–567, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Cook, M. Weitzman, P. Auinger, M. Nguyen, and W. H. Dietz, “Prevalence of a metabolic syndrome phenotype in adolescents: findings from the Third National Health and Nutrition Examination Survey, 1988–1994,” Archives of Pediatrics and Adolescent Medicine, vol. 157, no. 8, pp. 821–827, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. S. D. De Ferranti, K. Gauvreau, D. S. Ludwig, E. J. Neufeld, J. W. Newburger, and N. Rifai, “Prevalence of the metabolic syndrome in American adolescents: findings from the Third National Health and Nutrition Examination Survey,” Circulation, vol. 110, no. 16, pp. 2494–2497, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Tavares-Giannini, M. C. Caetano-Kuschnir, and M. Szklo, “Metabolic syndrome in overweight and obese adolescents: a comparison of two different diagnostic criteria,” Annals of Nutrition and Metabolism, vol. 64, no. 1, pp. 71–79, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Panagiotopoulos, R. Ronsley, B. Kuzeljevic, and J. Davidson, “Waist circumference is a sensitive screening tool for assessment of metabolic syndrome risk in children treated with second-generation antipsychotics,” Canadian Journal of Psychiatry, vol. 57, no. 1, pp. 34–44, 2012. View at Google Scholar · View at Scopus
  45. L. Maayan and C. U. Correll, “Weight gain and metabolic risks associated with antipsychotic medications in children and adolescents,” Journal of Child and Adolescent Psychopharmacology, vol. 21, no. 6, pp. 517–535, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. C. A. Calarge, G. Nicol, J. A. Schlechte, and T. L. Burns, “Cardiometabolic outcomes in children and adolescents following discontinuation of long-term risperidone treatment,” Journal of Child and Adolescent Psychopharmacology, vol. 24, no. 3, pp. 120–129, 2014. View at Publisher · View at Google Scholar · View at Scopus
  47. V. Motta, Clinical Biochemistry for Laboratory—Principles and Interpretations, MedBook, Rio de Janeiro, Brazil, 5th edition, 2009.