Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2018 (2018), Article ID 1289485, 10 pages
https://doi.org/10.1155/2018/1289485
Research Article

Different Associations of Trunk and Lower-Body Fat Mass Distribution with Cardiometabolic Risk Factors between Healthy Middle-Aged Men and Women

1Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women’s University, 6-46 Ikebiraki-cho, Nishinomiya, Hyogo 663-8558, Japan
2Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
3School of Computing, University of South Alabama, Mobile, AL 36688-0002, USA
4Department of Food Sciences and Nutrition, School of Human Environmental Science, Mukogawa Women’s University, 6-46 Ikebiraki-cho, Nishinomiya, Hyogo 663-8558, Japan
5Research Institute for Nutrition Sciences, Mukogawa Women’s University, 6-46 Ikebiraki-cho, Nishinomiya, Hyogo 663-8558, Japan
6Department of Diabetes and Endocrinology, Toho University Omori Medical Center, Omori-Ku, Omori-nishi 6-11-1, Tokyo 143-8541, Japan

Correspondence should be addressed to Bin Wu; moc.qq@umk.nib.uw

Received 19 August 2017; Accepted 30 October 2017; Published 4 February 2018

Academic Editor: Seung-Hwan Lee

Copyright © 2018 Bin Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. B. Meigs, P. W. Wilson, C. S. Fox et al., “Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease,” The Journal of Clinical Endocrinology & Metabolism, vol. 91, no. 8, pp. 2906–2912, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. C. J. Dobbelsteyn, M. R. Joffres, D. R. MacLean, G. Flowerdew, and The Canadian Heart Health Surveys Research Group, “A comparative evaluation of waist circumference, waist-to-hip ratio and body mass index as indicators of cardiovascular risk factors. The Canadian Heart Health Surveys,” International Journal of Obesity, vol. 25, no. 5, pp. 652–661, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. F. F. Horber, B. Gruber, F. Thomi, E. X. Jensen, and P. Jaeger, “Effect of sex and age on bone mass, body composition and fuel metabolism in humans,” Nutrition, vol. 13, no. 6, pp. 524–534, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. J. R. Fernández, M. Heo, S. B. Heymsfield et al., “Is percentage body fat differentially related to body mass index in Hispanic Americans, African Americans, and European Americans?” The American Journal of Clinical Nutrition, vol. 77, no. 1, pp. 71–75, 2003. View at Google Scholar
  5. J. Wang, J. C. Thornton, M. Russell, S. Burastero, S. Heymsfield, and R. N. Pierson Jr., “Asians have lower body mass index (BMI) but higher percent body fat than do whites: comparisons of anthropometric measurements,” The American Journal of Clinical Nutrition, vol. 60, no. 1, pp. 23–28, 1994. View at Google Scholar
  6. G. A. Borkan, S. G. Gerzof, A. H. Robbins, D. E. Hults, C. K. Silbert, and J. E. Silbert, “Assessment of abdominal fat content by computed tomography,” The American Journal of Clinical Nutrition, vol. 36, no. 1, pp. 172–177, 1982. View at Google Scholar
  7. G. Plourde, “The role of radiologic methods in assessing body composition and related metabolic parameters,” Nutrition Reviews, vol. 55, no. 8, pp. 289–296, 1997. View at Google Scholar
  8. E. G. Kamel, G. McNeill, and M. C. Van Wijk, “Usefulness of anthropometry and DXA in predicting intra-abdominal fat in obese men and women,” Obesity Research, vol. 8, no. 1, pp. 36–42, 2000. View at Publisher · View at Google Scholar
  9. E. G. Kamel, G. McNeill, T. S. Han et al., “Measurement of abdominal fat by magnetic resonance imaging, dual-energy X-ray absorptiometry and anthropometry in non-obese men and women,” International Journal of Obesity, vol. 23, no. 7, pp. 686–692, 1999. View at Publisher · View at Google Scholar
  10. G. Paradisi, L. Smith, C. Burtner et al., “Dual energy X-ray absorptiometry assessment of fat mass distribution and its association with the insulin resistance syndrome,” Diabetes Care, vol. 22, no. 8, pp. 1310–1317, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Buemann, A. Astrup, O. Pedersen et al., “Possible role of adiponectin and insulin sensitivity in mediating the favorable effects of lower body fat mass on blood lipids,” The Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 5, pp. 1698–1704, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. B. Snijder, J. M. Dekker, M. Visser et al., “Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: the Hoorn study,” Diabetes Care, vol. 27, no. 2, pp. 372–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Miljkovic-Gacic, X. Wang, C. M. Kammerer et al., “Sex and genetic effects on upper and lower body fat and associations with diabetes in multigenerational families of African heritage,” Metabolism, vol. 57, no. 6, pp. 819–823, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Tatsukawa, M. Kurokawa, Y. Tamari, H. Yoshimatsu, and T. Sakata, “Regional fat deposition in the legs is useful as a presumptive marker of antiatherogenesity in Japanese,” Proceedings of the Society for Experimental Biology and Medicine, vol. 223, no. 2, pp. 156–162, 2000. View at Publisher · View at Google Scholar
  15. R. E. Van Pelt, E. M. Evans, K. B. Schechtman, A. A. Ehsani, and W. M. Kohrt, “Contributions of total and regional fat mass to risk for cardiovascular disease in older women,” American Journal of Physiology Endocrinology and Metabolism, vol. 282, no. 5, pp. E1023–E1028, 2002. View at Publisher · View at Google Scholar
  16. P. Wiklund, F. Toss, L. Weinehall et al., “Abdominal and gynoid fat mass are associated with cardiovascular risk factors in men and women,” The Journal of Clinical Endocrinology & Metabolism, vol. 93, no. 11, pp. 4360–4366, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. D. W. Giraud, J. A. Driskell, and B. Setiawan, “Plasma homocysteine concentrations of Indonesian children with inadequate and adequate vitamin B-6 status,” Nutrition Research, vol. 21, no. 7, pp. 961–966, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. K. G. Alberti, P. Zimmet, and J. Shaw, “Metabolic syndrome—a new world-wide definition. A consensus statement from the International Diabetes Federation,” Diabetic Medicine, vol. 23, no. 5, pp. 469–480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Matsuzawa, “Metabolic syndrome-definition and diagnostic criteria in Japan,” Journal of Atherosclerosis and Thrombosis, vol. 12, no. 6, p. 301, 2005. View at Publisher · View at Google Scholar
  20. D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher, and R. C. Turner, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Matsuda and R. A. DeFronzo, “Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp,” Diabetes Care, vol. 22, no. 9, pp. 1462–1470, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, “Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge,” Clinical Chemistry, vol. 18, no. 6, pp. 499–502, 1972. View at Google Scholar
  23. T. Hirano, Y. Ito, H. Saegusa, and G. Yoshino, “A novel and simple method for quantification of small, dense LDL,” Journal of Lipid Research, vol. 44, no. 11, pp. 2193–2201, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Kobayashi, H. Hashimoto, I. Fukamachi et al., “Lipoprotein lipase mass and activity in severe hypertriglyceridemia,” Clinica Chimica Acta, vol. 216, no. 1-2, pp. 113–123, 1993. View at Publisher · View at Google Scholar · View at Scopus
  25. L. J. Roberts 2nd and J. D. Morrow, “The generation and actions of isoprostanes,” Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol. 1345, no. 2, pp. 121–135, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Kadota, N. Takamura, K. Aoyagi et al., “Availability of cardio-ankle vascular index (CAVI) as a screening tool for atherosclerosis,” Circulation Journal, vol. 72, no. 2, pp. 304–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. L. Bots, P. T. de Jong, A. Hofman, and D. E. Grobbee, “Left, right, near or far wall common carotid intima-media thickness measurements: associations with cardiovascular disease and lower extremity arterial atherosclerosis,” Journal of Clinical Epidemiology, vol. 50, no. 7, pp. 801–807, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. B. H. Goodpaster, F. L. Thaete, and D. E. Kelley, “Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus,” The American Journal of Clinical Nutrition, vol. 71, no. 4, pp. 885–892, 2000. View at Google Scholar
  29. T. W. Meade, V. Ruddock, Y. Stirling, R. Chakrabarti, and G. J. Miller, “Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study,” The Lancet, vol. 342, no. 8879, pp. 1076–1079, 1993. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Karpe, S. Boquist, R. Tang, G. M. Bond, U. de Faire, and A. Hamsten, “Remnant lipoproteins are related to intima-media thickness of the carotid artery independently of LDL cholesterol and plasma triglycerides,” Journal of Lipid Research, vol. 42, no. 1, pp. 17–21, 2001. View at Google Scholar
  31. T. B. Twickler, G. M. Dallinga-Thie, J. S. Cohn, and M. J. Chapman, “Elevated remnant-like particle cholesterol concentration: a characteristic feature of the atherogenic lipoprotein phenotype,” Circulation, vol. 109, no. 16, pp. 1918–1925, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Varbo, M. Benn, G. D. Smith, N. J. Timpson, A. Tybjaerg-Hansen, and B. G. Nordestgaard, “Remnant cholesterol, low-density lipoprotein cholesterol, and blood pressure as mediators from obesity to ischemic heart disease,” Circulation Research, vol. 116, no. 4, pp. 665–673, 2015. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Kabir, K. J. Catalano, S. Ananthnarayan et al., “Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance,” American Journal of Physiology Endocrinology and Metabolism, vol. 288, no. 2, pp. E454–E461, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Misra, A. Garg, N. Abate, R. M. Peshock, J. Stray-Gundersen, and S. M. Grundy, “Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men,” Obesity Research, vol. 5, no. 2, pp. 93–99, 1997. View at Publisher · View at Google Scholar
  35. M. B. Snijder, J. M. Dekker, M. Visser et al., “Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn study,” The American Journal of Clinical Nutrition, vol. 77, no. 5, pp. 1192–1197, 2003. View at Google Scholar
  36. L. B. Tanko, Y. Z. Bagger, P. Alexandersen, P. J. Larsen, and C. Christiansen, “Peripheral adiposity exhibits an independent dominant antiatherogenic effect in elderly women,” Circulation, vol. 107, no. 12, pp. 1626–1631, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Miyazaki, A. Mahankali, M. Matsuda et al., “Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients,” The Journal of Clinical Endocrinology & Metabolism, vol. 87, no. 6, pp. 2784–2791, 2002. View at Publisher · View at Google Scholar
  38. K. Kantartzis, A. Fritsche, O. Tschritter et al., “The association between plasma adiponectin and insulin sensitivity in humans depends on obesity,” Obesity Research, vol. 13, no. 10, pp. 1683–1691, 2005. View at Publisher · View at Google Scholar
  39. A. J. Hanley, D. Bowden, L. E. Wagenknecht et al., “Associations of adiponectin with body fat distribution and insulin sensitivity in nondiabetic Hispanics and African-Americans,” The Journal of Clinical Endocrinology & Metabolism, vol. 92, no. 7, pp. 2665–2671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. A. L. Borel, J. A. Nazare, J. Smith et al., “Visceral and not subcutaneous abdominal adiposity reduction drives the benefits of a 1-year lifestyle modification program,” Obesity, vol. 20, no. 6, pp. 1223–1233, 2012. View at Publisher · View at Google Scholar · View at Scopus