Table of Contents
International Journal of Evolutionary Biology
Volume 2011, Article ID 423938, 16 pages
http://dx.doi.org/10.4061/2011/423938
Research Article

A Macroevolutionary Perspective on Multiple Sexual Traits in the Phasianidae (Galliformes)

Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL 32611, USA

Received 2 October 2010; Accepted 26 February 2011

Academic Editor: Rob Kulathinal

Copyright © 2011 Rebecca T. Kimball et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Andersson, Sexual Selection, Princeton University Press, Princeton, NJ, USA, 1994.
  2. U. Candolin, “The use of multiple cues in mate choice,” Biological Reviews of the Cambridge Philosophical Society, vol. 78, no. 4, pp. 575–595, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Bro-Jørgensen, “Dynamics of multiple signalling systems: animal communication in a world in flux,” Trends in Ecology and Evolution, vol. 25, no. 5, pp. 292–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. P. Møller and A. Pomiankowski, “Why have birds got multiple sexual ornaments?” Behavioral Ecology and Sociobiology, vol. 32, no. 3, pp. 167–176, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. R. A. Johnstone, “The tactics of mutual mate choice and competitive search,” Behavioral Ecology and Sociobiology, vol. 40, no. 1, pp. 51–59, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Guilford and M. S. Dawkins, “Receiver psychology and the design of animal signals,” Trends in Neurosciences, vol. 16, no. 11, pp. 430–436, 1993. View at Google Scholar · View at Scopus
  7. T. Guilford and M. S. Dawkins, “Receiver psychology and the evolution of animal signals,” Animal Behaviour, vol. 42, no. 1, pp. 1–14, 1991. View at Google Scholar · View at Scopus
  8. C. Rowe, “Receiver psychology and the evolution of multicomponent signals,” Animal Behaviour, vol. 58, no. 5, pp. 921–931, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Kokko, M. D. Jennions, and A. Houde, “Evolution of frequency-dependent mate choice: keeping up with fashion trends,” Proceedings of the Royal Society B, vol. 274, no. 1615, pp. 1317–1324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Holland and W. R. Rice, “Perspective: chase-away sexual selection: antagonistic seduction versus resistance,” Evolution, vol. 52, no. 1, pp. 1–7, 1998. View at Google Scholar · View at Scopus
  11. G. S. Van Doorn and F. J. Weissing, “Sexual conflict and the evolution of female preferences for indicators of male quality,” American Naturalist, vol. 168, no. 6, pp. 742–757, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Pomiankowski and Y. Iwasa, “Evolution of multiple sexual preferences by Fisher's runaway process of sexual selection,” Proceedings of the Royal Society B, vol. 253, no. 1337, pp. 173–181, 1993. View at Google Scholar · View at Scopus
  13. R. O. Prum, “Phylogenetic tests of alternative intersexual selection mechanisms: Trait macroevolution in a polygynous clade (Aves: Pipridae),” American Naturalist, vol. 149, no. 4, pp. 668–692, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Berglund, A. Bisazza, and A. Pilastro, “Armaments and ornaments: an evolutionary explanation of traits of dual utility,” Biological Journal of the Linnean Society, vol. 58, no. 4, pp. 385–399, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. R. O. Vasconcelos, J. M. Simões, V. C. Almada, P. J. Fonseca, and M. C. P. Amorim, “Vocal behavior during territorial intrusions in the lusitanian toadfish: boatwhistles also function as territorial 'keep-out' signals,” Ethology, vol. 116, no. 2, pp. 155–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. S. Chaine and B. E. Lyon, “Intrasexual selection on multiple plumage ornaments in the lark bunting,” Animal Behaviour, vol. 76, no. 3, pp. 657–667, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Rowe, “Sound improves visual discrimination learning in avian predators,” Proceedings of the Royal Society B, vol. 269, no. 1498, pp. 1353–1357, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. J. A. Pfaff, L. Zanette, S. A. MacDougall-Shackleton, and E. A. MacDougall-Shackleton, “Song repertoire size varies with HVC volume and is indicative of male quality in song sparrows (Melospiza melodia),” Proceedings of the Royal Society B, vol. 274, no. 1621, pp. 2035–2040, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. T. Thompson, A. N. Bissell, and E. P. Martins, “Inhibitory interactions between multimodal behavioural responses may influence the evolution of complex signals,” Animal Behaviour, vol. 76, no. 1, pp. 113–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Hoglund, “Size and plumage dimorphism in lek-breeding birds: a comparative analysis,” American Naturalist, vol. 134, no. 1, pp. 72–87, 1989. View at Publisher · View at Google Scholar · View at Scopus
  21. International Chicken Genome Sequencing Consortium, “Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution,” Nature, vol. 432, no. 7018, pp. 695–716, 2004. View at Google Scholar
  22. R. A. Dalloul, J. A. Long, A. V. Zimin et al., “Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis,” PLoS Biology, vol. 8, no. 9, Article ID e1000475, 2010. View at Publisher · View at Google Scholar
  23. S. Madge and P. McGowan, Pheasants, Partridges and Grouse, Princeton University Press, Princeton, NJ, USA, 2002.
  24. G. W. H. Davison, “Avian spurs,” Journal of Zoology, vol. 206, pp. 353–366, 1985. View at Google Scholar
  25. R. T. Kimball and E. L. Braun, “A multigene phylogeny of Galliformes supports a single origin of erectile ability in non-feathered facial traits,” Journal of Avian Biology, vol. 39, no. 4, pp. 438–445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. R. T. Kimball, E. L. Braun, J. D. Ligon, E. Randi, and V. Lucchini, “Using molecular phylogenetics to interpret evolutionary changes in morphology and behavior in the Phasianidae,” Acta Zoologica Sinica, vol. 52, supplement, pp. 362–365, 2006. View at Google Scholar
  27. J. D. Ligon, R. Kimball, and M. Merola-Zwartjes, “Mate choice by female red junglefowl: the issues of multiple ornaments and fluctuating asymmetry,” Animal Behaviour, vol. 55, no. 1, pp. 41–50, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. J. D. Ligon, R. Thornhill, M. Zuk, and K. Johnson, “Male-male competition, ornamentation and the role of testosterone in sexual selection in red jungle fowl,” Animal Behaviour, vol. 40, no. 2, pp. 367–373, 1990. View at Google Scholar · View at Scopus
  29. T. S. Johnsen, M. Zuk, and E. A. Fessler, “Social dominance, male behaviour and mating in mixed-sex flocks of red jungle fowl,” Behaviour, vol. 138, no. 1, pp. 1–18, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Petrie, H. Tim, and S. Carolyn, “Peahens prefer peacocks with elaborate trains,” Animal Behaviour, vol. 41, no. 2, pp. 323–331, 1991. View at Google Scholar · View at Scopus
  31. A. Loyau, M. S. Jalme, and G. Sorci, “Intra- and intersexual selection for multiple traits in the peacock (Pavo cristatus),” Ethology, vol. 111, no. 9, pp. 810–820, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Takahashi, H. Arita, M. Hiraiwa-Hasegawa, and T. Hasegawa, “Peahens do not prefer peacocks with more elaborate trains,” Animal Behaviour, vol. 75, no. 4, pp. 1209–1219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Buchholz, “Male dominance and variation in fleshy head ornamentation in wild turkeys,” Journal of Avian Biology, vol. 28, no. 3, pp. 223–230, 1997. View at Google Scholar · View at Scopus
  34. R. Buchholz, “Female choice, parasite load and male ornamentation in wild turkeys,” Animal Behaviour, vol. 50, no. 4, pp. 929–943, 1995. View at Google Scholar · View at Scopus
  35. C. Mateos, “Sexual selection in the ring-necked pheasant: a review,” Ethology Ecology and Evolution, vol. 10, no. 4, pp. 313–332, 1998. View at Google Scholar · View at Scopus
  36. L. M. Brodsky, “Ornament size influences mating success in male rock ptarmigan,” Animal Behaviour, vol. 36, no. 3, pp. 662–667, 1988. View at Google Scholar · View at Scopus
  37. K. Holder and R. Montgomeri, “Context and consequences of comb displays by male rock ptarmigan,” Animal Behaviour, vol. 45, no. 3, pp. 457–470, 1993. View at Publisher · View at Google Scholar · View at Scopus
  38. P. T. Rintamäki, J. Höglund, E. Karvonen et al., “Combs and sexual selection in black grouse (Tetrao tetrix),” Behavioral Ecology, vol. 11, no. 5, pp. 465–471, 2000. View at Google Scholar · View at Scopus
  39. C. G. Sibley and J. E. Ahlquist, Phylogeny and Classification of Birds: A Study in Molecular Evolution, Yale University Press, New Haven, Conn, USA, 1990.
  40. P. R. Lowe, “Some preliminary notes on the anatomy and systematic position of Afropavo congensis Chapin,” in Proceedings of the 9th International Ornithological Congress, J. Delacour, Ed., pp. 219–230, Rouen, France, 1938.
  41. J. Delacour, The Pheasants of the World, Saiga, Surrey, UK, 1977.
  42. R. T. Kimball, E. L. Braun, P. W. Zwartjes, T. M. Crowe, and J. D. Ligon, “A molecular phylogeny of the pheasants and partridges suggests that these lineages are not monophyletic,” Molecular Phylogenetics and Evolution, vol. 11, no. 1, pp. 38–54, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. T. M. Crowe, R. C. K. Bowie, P. Bloomer et al., “Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of character exclusion, data partitioning and missing data,” Cladistics, vol. 22, no. 6, pp. 495–532, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. M. H. Armstrong, E. L. Braun, and R. T. Kimball, “Phylogenetic utility of avian ovomucoid intron G: a comparison of nuclear and mitochondrial phylogenies in Galliformes,” Auk, vol. 118, no. 3, pp. 799–804, 2001. View at Google Scholar · View at Scopus
  45. E. J. Smith, L. Shi, and Z. Tu, “Gallus gallus aggrecan gene-based phylogenetic analysis of selected avian taxonomic groups,” Genetica, vol. 124, no. 1, pp. 23–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. W. A. Cox, R. T. Kimball, and E. L. Braun, “Phylogenetic position of the New World quail (Odontophoridae): eight nuclear loci and three mitochondrial regions contradict morphology and the Sibley-Ahlquist tapestry,” Auk, vol. 124, no. 1, pp. 71–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. V. B. Kaiser, M. van Tuinen, and H. Ellegren, “Insertion events of CR1 retrotransposable elements elucidate the phylogenetic branching order in galliform birds,” Molecular Biology and Evolution, vol. 24, no. 1, pp. 338–347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. J. O. Kriegs, A. Matzke, G. Churakov et al., “Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes),” BMC Evolutionary Biology, vol. 7, article no. 190, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Y. Shen, L. Liang, Y. B. Sun et al., “A mitogenomic perspective on the ancient, rapid radiation in the Galliformes with an emphasis on the Phasianidae,” BMC Evolutionary Biology, vol. 10, no. 1, article no. 132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Lislevand, J. Figuerola, and T. Székely, “Evolution of sexual size dimorphism in grouse and allies (Aves: Phasianidae) in relation to mating competition, fecundity demands and resource division,” Journal of Evolutionary Biology, vol. 22, no. 9, pp. 1895–1905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. H. N. Bryant, “The cladistic of matrix representation with parsimony analysis,” in Phylogenetic Supertrees. Combining Information to Reveal the Tree of Life Computational Biology, O. R. P. Binnida-Emonds, Ed., vol. 3, pp. 353–368, Kluwer Academic Publishers, Dordrecth, The Netherlands, 2004. View at Google Scholar
  52. J. Gatesy and M. S. Springer, “A critique of matrix representation with parsimony supertrees,” in Phylogenetic Supertrees. Combining Information to Reveal the Tree of Life Computational Biology, O. R. P. Binnida-Emonds, Ed., vol. 3, pp. 369–388, Kluwer Academic Publishers, Dordrecth, The Netherlands, 2004. View at Google Scholar
  53. C. Camacho, G. Coulouris, V. Avagyan et al., “BLAST+: architecture and applications,” BMC Bioinformatics, vol. 10, article no. 421, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Randi, V. Lucchini, A. Hennache, R. T. Kimball, E. L. Braun, and J. D. Ligon, “Evolution of the mitochondrial DNA control region and cytochrome b genes and the inference of phylogenetic relationships in the avian genus Lophura (Galliformes),” Molecular Phylogenetics and Evolution, vol. 19, no. 2, pp. 187–201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Stamatakis, “RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models,” Bioinformatics, vol. 22, no. 21, pp. 2688–2690, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Stamatakis, “Phylogenetic models of rate heterogeneity: a high performance computing perspective,” in Proceedings of 20th IEEE/ACM International Parallel and Distributed Processing Symposium (IPDPS '06), Rhodos, Greece, April 2006.
  57. J. P. Huelsenbeck and F. Ronquist, “MRBAYES: Bayesian inference of phylogenetic trees,” Bioinformatics, vol. 17, no. 8, pp. 754–755, 2001. View at Google Scholar · View at Scopus
  58. F. Ronquist and J. P. Huelsenbeck, “MrBayes 3: Bayesian phylogenetic inference under mixed models,” Bioinformatics, vol. 19, no. 12, pp. 1572–1574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. P. A. Johnsgard, Grouse and Quails of North America, University of Nebraska Press, Lincoln, Neb, USA, 1973.
  60. P. A. Johnsgard, The Quails, Partridges, and Francolins of the World, Oxford University Press, Oxford, UK, 1988.
  61. P. A. Johnsgard, The Pheasants of the World, Oxford University Press, Oxford, UK, 1986.
  62. M. Pagel, A. Meade, and D. Barker, “Bayesian estimation of ancestral character states on phylogenies,” Systematic Biology, vol. 53, no. 5, pp. 673–684, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. “Mesquite: A modular system for evolutionary analysis Version Version 2.72,” http://mesquiteproject.org.
  64. S. J. Hackett, R. T. Kimball, S. Reddy et al., “A phylogenomic study of birds reveals their evolutionary history,” Science, vol. 320, no. 5884, pp. 1763–1768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Pagel, “Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters,” Proceedings of the Royal Society B, vol. 255, no. 1342, pp. 37–45, 1994. View at Google Scholar · View at Scopus
  66. R. T. Kimball, E. L. Braun, D. J. Ligon, V. Lucchini, and E. Randi, “A molecular phylogeny of the peacock-pheasants (Galliformes: Polyplectron spp.) indicates loss and reduction of ornamental traits and display behaviours,” Biological Journal of the Linnean Society, vol. 73, no. 2, pp. 187–198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. A. J. Bonilla, E. L. Braun, and R. T. Kimball, “Comparative molecular evolution and phylogenetic utility of 3′-UTRs and introns in Galliformes,” Molecular Phylogenetics and Evolution, vol. 56, no. 2, pp. 536–542, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Kolm, R. W. Stein, A. Ø. Mooers, J. J. Verspoor, and E. J. A. Cunningham, “Can sexual selection drive female life histories? A comparative study on galliform birds,” Journal of Evolutionary Biology, vol. 20, no. 2, pp. 627–638, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. S. H. Eo, O. R. P. Bininda-Emonds, and J. P. Carroll, “A phylogenetic supertree of the fowls (Galloanserae, Aves),” Zoologica Scripta, vol. 38, no. 5, pp. 465–481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. J. J. Wiens, “Widespread loss of sexually selected traits: How the peacock lost its spots,” Trends in Ecology and Evolution, vol. 16, no. 9, pp. 517–523, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Buchholz, Adaptive Functions of Fleshy Ornamentation in Wild Turkeys and Related Birds, Dept. of Zoology, University of Florida, Gainesville, Fla, USA, 1994.
  72. R. S. Wilson, C. H. Condon, G. David, S. FitzGibbon, A. C. Niehaus, and K. Pratt, “Females prefer athletes, males fear the disadvantaged: different signals used in female choice and male competition have varied consequences,” Proceedings of the Royal Society B, vol. 277, no. 1689, pp. 1923–1928, 2010. View at Publisher · View at Google Scholar · View at Scopus