Table of Contents
International Journal of Evolutionary Biology
Volume 2011, Article ID 641501, 10 pages
http://dx.doi.org/10.4061/2011/641501
Research Article

Modularity of the Oral Jaws Is Linked to Repeated Changes in the Craniofacial Shape of African Cichlids

Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA

Received 16 December 2010; Accepted 14 February 2011

Academic Editor: Stephan Koblmüller

Copyright © 2011 Kevin J. Parsons et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Mayr, “Change of genetic environment and evolution,” in Evolution as a Process, J. Huxley, A. C. Hardy, and E. B. Ford, Eds., pp. 157–180, Allen and Unwin, London, UK, 1954. View at Google Scholar
  2. G. Bell, “On the function of flowers,” Proceedings of the Royal Society of London B, vol. 224, no. 1235, pp. 223–265, 1985. View at Google Scholar · View at Scopus
  3. K. J. Parsons and B. W. Robinson, “Replicated evolution of integrated plastic responses during early adaptive divergence,” Evolution, vol. 60, no. 4, pp. 801–813, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Marroig and J. M. Cheverud, “Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys,” Evolution, vol. 59, no. 5, pp. 1128–1142, 2005. View at Google Scholar · View at Scopus
  5. D. Schluter, “Adaptive radiation along genetic lines of least resistance,” Evolution, vol. 50, no. 5, pp. 1766–1774, 1996. View at Google Scholar · View at Scopus
  6. J. L. Hendrikse, T. E. Parsons, and B. Hallgrímsson, “Evolvability as the proper focus of evolutionary developmental biology,” Evolution and Development, vol. 9, no. 4, pp. 393–401, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. Pigliucci, “Is evolvability evolvable?” Nature Reviews Genetics, vol. 9, no. 1, pp. 75–82, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. E. C. Olson and R. L. Miller, Morphological Integration, University of Chicago Press, Chicago, Ill, USA, 1958.
  9. R. L. Berg, “The ecological significance of correlation pleiades,” Evolution, vol. 14, pp. 171–180, 1960. View at Google Scholar
  10. L. Van Valen, “The study of morphological integration,” Evolution, vol. 19, pp. 347–349, 1965. View at Google Scholar
  11. M. Pigliucci and K. Preston, Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes, Oxford University Press, Oxford, UK, 2004.
  12. C. P. Klingenberg, “Morphological integration and developmental modularity,” Annual Review of Ecology, Evolution, and Systematics, vol. 39, pp. 115–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C. P. Klingenberg, “Evolution and development of shape: integrating quantitative approaches,” Nature Reviews Genetics, vol. 11, no. 9, pp. 623–635, 2010. View at Publisher · View at Google Scholar · View at PubMed
  14. M. Pavlicev, J. M. Cheverud, and G. P. Wagner, “Measuring morphological integration using eigenvalue variance,” Evolutionary Biology, vol. 36, no. 1, pp. 157–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Cheverud, E. J. Routman, and D. J. Irschick, “Pleiotropic effects of individual gene loci on mandibular morphology,” Evolution, vol. 51, no. 6, pp. 2006–2016, 1997. View at Google Scholar · View at Scopus
  16. C. P. Klingenberg, A. V. Badyaev, S. M. Sowry, and N. J. Beckwith, “Inferring developmental modularity from morphological integration: analysis of individual variation and asymmetry in bumblebee wings,” American Naturalist, vol. 157, no. 1, pp. 11–23, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. C. P. Klingenberg, K. Mebus, and J. C. Auffray, “Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible?” Evolution and Development, vol. 5, no. 5, pp. 522–531, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. C. P. Klingenberg, L. J. Leamy, and J. M. Cheverud, “Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible,” Genetics, vol. 166, no. 4, pp. 1909–1921, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. G. P. Wagner and J. G. Mezey, “The role of genetic architecture constraints in the origin of variational modularity,” in Modularity in Development and Evolution, G. Schlosser and G. P. Wagner, Eds., pp. 338–358, The University of Chicago Press, Chicago, Ill, USA, 2004. View at Google Scholar
  20. E. J. Márquez, “A statistical framework for testing modularity in multidimensional data,” Evolution, vol. 62, no. 10, pp. 2688–2708, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. L. Zelditch, A. R. Wood, R. M. Bonett, and D. L. Swiderski, “Modularity of the rodent mandible: integrating bones, muscles, and teeth,” Evolution and Development, vol. 10, no. 6, pp. 756–768, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. L. Zelditch, A. R. Wood, and D. L. Swiderski, “Building developmental integration into functional systems: function-induced integration of mandibular shape,” Evolutionary Biology, vol. 36, no. 1, pp. 71–87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. S. Yang, “Modularity, evolvability, and adaptive radiations: a comparison of the hemi- and holometabolous insects,” Evolution and Development, vol. 3, no. 2, pp. 59–72, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. J. P. Hunter, “Key innovations and the ecology of macroevolution,” Trends in Ecology and Evolution, vol. 13, no. 1, pp. 31–36, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Salzburger, “The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes,” Molecular Ecology, vol. 18, no. 2, pp. 169–185, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. K. F. Liem, “Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws,” Systematic Zoology, vol. 22, pp. 425–441, 1973. View at Google Scholar
  27. C. D. Hulsey and J. T. Streelman, “Cichlid pharyngeal jaw fusion: is suturing the key to unparalleled trophic divergence?” Integrative and Comparative Biology, vol. 45, p. 1016, 2005. View at Google Scholar
  28. W. J. Cooper, K. Parsons, A. McIntyre, B. Kern, A. McGee-Moore, and R. C. Albertson, “Bentho-pelagic divergence of cichlid feeding architecture was prodigious and consistent during multiple adaptive radiations within African Rift-Lakes,” PLoS ONE, vol. 5, no. 3, Article ID e9551, 2010. View at Publisher · View at Google Scholar · View at PubMed
  29. G. C. Anker, “Morphology and kinematics of the stickleback, Gasterosteus aculeatus,” Transactions of the Zoological Society (London), vol. 32, pp. 311–416, 1974. View at Google Scholar
  30. M. Muller, “Optimization principles applied to the mechanism of neurocranium levation and mouth bottom depression in bony fishes (Halecostomi),” Journal of Theoretical Biology, vol. 126, no. 3, pp. 343–368, 1987. View at Google Scholar
  31. M. W. Westneat, “Kinematics of jaw protrusion in cheiline wrasses (Labridae)—testing a 4-bar linkage model,” American Zoologist, vol. 28, p. A114, 1988. View at Google Scholar
  32. M. W. Westneat, “Feeding mechanics of teleost fishes (Labridae; Perciformes): a test of four-bar linkage models,” Journal of Morphology, vol. 205, no. 3, pp. 269–295, 1990. View at Publisher · View at Google Scholar
  33. M. W. Westneat, “A biomechanical model for analysis of muscle force, power output and lower jaw motion in fishes,” Journal of Theoretical Biology, vol. 223, no. 3, pp. 269–281, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  34. K. A. Young, J. Snoeks, and O. Seehausen, “Morphological diversity and the roles of contingency, chance and determinism in African cichlid radiations,” PLoS One, vol. 4, no. 3, Article ID e4740, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. J. Snoeks, “Cichlid diversity, speciation and systematics: examples from the Great African Lakes,” Journal of Aquariculture and Aquatic Sciences, vol. 9, pp. 150–166, 2001. View at Google Scholar
  36. G. F. Turner, O. Seehausen, M. E. Knight, C. J. Allender, and R. L. Robinson, “How many species of cichlid fishes are there in African lakes?” Molecular Ecology, vol. 10, no. 3, pp. 793–806, 2001. View at Publisher · View at Google Scholar
  37. P. D. Danley and T. D. Kocher, “Speciation in rapidly diverging systems: lessons from Lake Malawi,” Molecular Ecology, vol. 10, no. 5, pp. 1075–1086, 2001. View at Publisher · View at Google Scholar
  38. O. Seehausen, “Hybridization and adaptive radiation,” Trends in Ecology and Evolution, vol. 19, no. 4, pp. 198–207, 2004. View at Publisher · View at Google Scholar · View at PubMed
  39. W. J. Cooper and M. W. Westneat, “Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches,” BMC Evolutionary Biology, vol. 9, no. 1, Article ID 24, 2009. View at Publisher · View at Google Scholar · View at PubMed
  40. S. Skulason, D. L. G. Noakes, and S. S. Snorrason, “Ontogeny of trophic morphology in four sympatric morphs of arctic charr Salvelinus alpinus in Thingvallavatn, Iceland,” Biological Journal of the Linnean Society, vol. 38, no. 3, pp. 281–301, 1989. View at Google Scholar
  41. B. W. Robinson, D. S. Wilson, A. S. Margosian, and P. T. Lotito, “Ecological and morphological differentiation of pumpkinseed sunfish in lakes without bluegill sunfish,” Evolutionary Ecology, vol. 7, no. 5, pp. 451–464, 1993. View at Publisher · View at Google Scholar
  42. K. Østbye, T. F. Næsje, L. Bernatchez, O. T. Sandlund, and K. Hindar, “Morphological divergence and origin of sympatric populations of European whitefish (Coregonus lavaretus L.) in Lake Femund, Norway,” Journal of Evolutionary Biology, vol. 18, no. 3, pp. 683–702, 2005. View at Publisher · View at Google Scholar · View at PubMed
  43. R. C. Albertson, J. T. Streelman, and T. D. Kocher, “Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5252–5257, 2003. View at Publisher · View at Google Scholar · View at PubMed
  44. R. C. Albertson, J. T. Streelman, T. D. Kocher, and P. C. Yelick, “Integration and evolution of the cichlid mandible: the molecular basis of alternate feeding strategies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 45, pp. 16287–16292, 2005. View at Publisher · View at Google Scholar · View at PubMed
  45. E. J. Márquez, “A statistical framework for testing modularity in multidimensional data,” Evolution, vol. 62, no. 10, pp. 2688–2708, 2008. View at Publisher · View at Google Scholar · View at PubMed
  46. F. J. Rohlf, “tpsDig2,” A software used to collect xy coordinate data for use in geometric morphometrics, 2009, http://life.bio.sunysb.edu/morph/.
  47. J. T. Richtsmeier, S. R. Lele, and T. M. Cole III, “Landmark morphometrics and the analysis of variation,” in Variation: A Central Concept in Biology, B. Hallgrímsson and B. K. Hall, Eds., pp. 49–69, Elsevier, Amsterdam, The Netherlands, 2005. View at Google Scholar
  48. B. F. J. Manly, Randomization, Bootstrap and Monte Carlo Methods in Biology, Chapman and Hall/CRC Press, Boca Raton, Fla, USA, 3rd edition, 2006.
  49. W. J. Krzanowski, Principles of Multivariate Analysis: A User's Perspective, Oxford University Press, Oxford, UK, 2000.
  50. K. R. Elmer, C. Reggio, T. Wirth, E. Verheyen, W. Salzburger, and A. Meyer, “Pleistocene desiccation in East Africa bottlenecked but did not extirpate the adaptive radiation of Lake Victoria haplochromine cichlid fishes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 32, pp. 13404–13409, 2009. View at Publisher · View at Google Scholar · View at PubMed
  51. W. L. Brown and E. O. Wilson, “Character displacement,” Systematic Zoology, vol. 5, pp. 49–64, 1956. View at Google Scholar
  52. D. Schluter and J. D. McPhail, “Ecological character displacement and speciation in sticklebacks,” American Naturalist, vol. 140, no. 1, pp. 85–108, 1992. View at Publisher · View at Google Scholar · View at PubMed
  53. D. Schluter, The Ecology of Adaptive Radiation, Oxford University Press, New York, NY, USA, 2000.
  54. D. Schluter, “Character displacement between distantly related taxa? Finches and bees in the Galapagos,” American Naturalist, vol. 127, no. 1, pp. 95–102, 1986. View at Google Scholar
  55. T. Dayan and D. Simberloff, “Ecological and community-wide character displacement: the next generation,” Ecology Letters, vol. 8, no. 8, pp. 875–894, 2005. View at Publisher · View at Google Scholar
  56. L. Ruber and D. C. Adams, “Evolutionary convergence of body shape and trophic morphology in cichlids from Lake Tanganyika,” Journal of Evolutionary Biology, vol. 14, no. 2, pp. 325–332, 2001. View at Publisher · View at Google Scholar
  57. C. J. Allender, O. Seehausen, M. E. Knight, G. F. Turner, and N. Maclean, “Divergent selection during speciation of Lake Malawi cichlid fishes inferred from parallel radiations in nuptial coloration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14074–14079, 2003. View at Publisher · View at Google Scholar · View at PubMed
  58. A. Konings, Malawi Cichlids in Their Natural Habitat, Cichlid Press, Lauenau, Germany, 2007.
  59. M. W. Westneat, “Skull biomechanics and suction feeding in fishes,” in Fish Biomechanics, G. V. Lauder and R. E. Shadwick, Eds., Academic Press, 2005. View at Google Scholar
  60. G. P. Wagner, M. Pavlicev, and J. M. Cheverud, “The road to modularity,” Nature Reviews Genetics, vol. 8, no. 12, pp. 921–931, 2007. View at Publisher · View at Google Scholar · View at PubMed
  61. W. R. Atchley and B. K. Hall, “A model for development and evolution of complex morphological structures,” Biological Reviews of the Cambridge Philosophical Society, vol. 66, no. 2, pp. 101–157, 1991. View at Google Scholar
  62. J. K. Eberhart, M. E. Swartz, J. G. Crump, and C. B. Kimmel, “Early Hedgehog signaling from neural to oral epithelium organizes anterior craniofacial development,” Development, vol. 133, no. 6, pp. 1069–1077, 2006. View at Publisher · View at Google Scholar · View at PubMed
  63. C. C. Cubbage and P. M. Mabee, “Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, Cyprinidae),” Journal of Morphology, vol. 229, no. 2, pp. 121–160, 1996. View at Google Scholar
  64. K. Fujimura and N. Okada, “Shaping of the lower jaw bone during growth of Nile tilapia Oreochromis niloticus and a Lake Victoria cichlid Haplochromis chilotes: a geometric morphometric approach,” Development Growth and Differentiation, vol. 50, no. 8, pp. 653–663, 2008. View at Publisher · View at Google Scholar · View at PubMed
  65. P. Vandewalle, B. Focant, F. Huriaux, and M. Chardon, “Early development of the cephalic skeleton of Barbus barbus (Teleostei, Cyprinidae),” Journal of Fish Biology, vol. 41, pp. 43–62, 1992. View at Google Scholar
  66. P. M. Mabee and T. A. Trendler, “Development of the cranium and paired fins in Betta splendens (Teleostei: Percomorpha): intraspecific variation and interspecific comparisons,” Journal of Morphology, vol. 227, no. 3, pp. 249–287, 1996. View at Google Scholar
  67. P. Le Pabic, E. J. Stellwag, and J. L. Scemama, “Embryonic development and skeletogenesis of the pharyngeal jaw apparatus in the cichlid Nile tilapia (Oreochromis niloticus),” Anatomical Record, vol. 292, no. 11, pp. 1780–1800, 2009. View at Publisher · View at Google Scholar · View at PubMed
  68. S. W. Herring, “Epigenetic and functional influences on skull growth,” in The Skull, J. Hanken and B. K. Hall, Eds., pp. 153–206, University of Chicago Press, Chicago, Ill, USA, 1993. View at Google Scholar
  69. A. G. Robling, A. B. Castillo, and C. H. Turner, “Biomechanical and molecular regulation of bone remodeling,” Annual Review of Biomedical Engineering, vol. 8, pp. 455–498, 2006. View at Publisher · View at Google Scholar · View at PubMed
  70. R. L. Young and A. V. Badyaev, “Evolution of ontogeny: linking epigenetic remodeling and genetic adaptation in skeletal structures,” Integrative and Comparative Biology, vol. 47, no. 2, pp. 234–244, 2007. View at Publisher · View at Google Scholar
  71. K. J. Parsons and R. C. Albertson, “Roles for Bmp4 and CaM1 in shaping the jaw: evo-devo and beyond,” Annual Review of Genetics, vol. 43, pp. 369–388, 2009. View at Publisher · View at Google Scholar · View at PubMed
  72. R. C. Albertson and P. C. Yelick, “Fgf8 haploinsufficiency results in distinct craniofacial defects in adult zebrafish,” Developmental Biology, vol. 306, no. 2, pp. 505–515, 2007. View at Publisher · View at Google Scholar · View at PubMed
  73. D. M. Parichy, D. G. Ransom, B. Paw, L. I. Zon, and S. L. Johnson, “An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio,” Development, vol. 127, no. 14, pp. 3031–3044, 2000. View at Google Scholar
  74. P. E. Witten, A. Hansen, and B. K. Hall, “Features of mono- and multinucleated bone resorbing cells of the zebrafish Danio rerio and their contribution to skeletal development, remodeling, and growth,” Journal of Morphology, vol. 250, no. 3, pp. 197–207, 2001. View at Publisher · View at Google Scholar · View at PubMed
  75. P. H. Wimberger, “Plasticity of jaw and skull morphology in the Neotropical cichlids Geophagus brasiliensis and G. steindachneri,” Evolution, vol. 45, pp. 1545–1563, 1991. View at Google Scholar
  76. N. Bouton, F. Witte, and J. J. M. Van Alphen, “Experimental evidence for adaptive phenotypic plasticity in a rock-dwelling cichlid fish from Lake Victoria,” Biological Journal of the Linnean Society, vol. 77, no. 2, pp. 185–192, 2002. View at Publisher · View at Google Scholar
  77. X. Nie, K. Luukko, and P. Kettunen, “BMP signalling in craniofacial development,” International Journal of Developmental Biology, vol. 50, no. 6, pp. 511–521, 2006. View at Publisher · View at Google Scholar · View at PubMed
  78. J. Cebra-Thomas, F. Tan, S. Sistla et al., “How the turtle forms its shell: a paracrine hypothesis of carapace formation,” Journal of Experimental Zoology B, vol. 304, no. 6, pp. 558–569, 2005. View at Publisher · View at Google Scholar · View at PubMed
  79. K. E. Sears, R. R. Behringer, J. J. Rasweiler, and L. A. Niswander, “Development of bat flight: morphologic and molecular evolution of bat wing digits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 17, pp. 6581–6586, 2006. View at Publisher · View at Google Scholar · View at PubMed
  80. Y. Terai, N. Morikawa, and N. Okada, “The evolution of the pro-domain of bone morphogenetic protein 4 (Bmp4) in an explosively speciated lineage of East African cichlid fishes [2],” Molecular Biology and Evolution, vol. 19, no. 9, pp. 1628–1632, 2002. View at Google Scholar
  81. A. Abzhanov, M. Protas, B. R. Grant, P. R. Grant, and C. J. Tabin, “Bmp4 and morphological variation of beaks in Darwin's finches,” Science, vol. 305, no. 5689, pp. 1462–1465, 2004. View at Publisher · View at Google Scholar · View at PubMed
  82. P. Wu, T. X. Jiang, S. Suksaweang, R. B. Widelitz, and C. M. Chuong, “Molecular shaping of the beak,” Science, vol. 305, no. 5689, pp. 1465–1466, 2004. View at Publisher · View at Google Scholar · View at PubMed
  83. P. Wu, T. X. Jiang, J. Y. Shen, R. B. Widelitz, and C. M. Chuong, “Morphoregulation of avian beaks: comparative mapping of growth zone activities and morphological evolution,” Developmental Dynamics, vol. 235, no. 5, pp. 1400–1412, 2006. View at Publisher · View at Google Scholar · View at PubMed
  84. M. Ikegame, O. Ishibashi, T. Yoshizawa et al., “Tensile stress induces bone morphogenetic protein 4 in preosteoblastic and fibroblastic cells, which later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ culture,” Journal of Bone and Mineral Research, vol. 16, no. 1, pp. 24–32, 2001. View at Google Scholar
  85. J. J. Mao and H. D. Nah, “Growth and development: hereditary and mechanical modulations,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 125, no. 6, pp. 676–689, 2004. View at Publisher · View at Google Scholar
  86. P. Aspenberg, N. Basic, M. Tagil, and S. Vukicevic, “Reduced expression of BMP-3 due to mechanical loading: a link between mechanical stimuli and tissue differentiation,” Acta Orthopaedica Scandinavica, vol. 71, no. 6, pp. 558–562, 2000. View at Google Scholar
  87. T. Nakase, S. Nomura, H. Yoshikawa et al., “Transient and localized expression of bone morphogenetic protein 4 messenger RNA during fracture healing,” Journal of Bone and Mineral Research, vol. 9, no. 5, pp. 651–659, 1994. View at Google Scholar
  88. M. Sato, T. Ochi, T. Nakase et al., “Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis,” Journal of Bone and Mineral Research, vol. 14, no. 7, pp. 1084–1095, 1999. View at Publisher · View at Google Scholar · View at PubMed